Skip to main content

Advertisement

Log in

Deformation of lower-mantle ferropericlase (Mg,Fe)O across the electronic spin transition

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Recent high-pressure studies have shown that an electronic spin transition of iron in ferropericlase, an expected major phase of Earth’s lower mantle, results in changes in its properties, including density, incompressibility, radiative thermal conductivity, electrical conductivity, and sound velocities. To understand the rheology of ferropericlase across the spin transition, we have used in situ radial X-ray diffraction techniques to examine ferropericlase, (Mg0.83,Fe0.17)O, deformed non-hydrostatically in a diamond cell up to 81 GPa at room temperature. Compared with recent quasi-hydrostatic studies, the range of the spin transition is shifted by approximately 20 GPa as a result of the presence of large differential stress in the sample. We also observed a reduction in incompressibility and in the unit cell volume of 3% across the spin transition. Our radial X-ray diffraction results show that the {0 0 1} texture is the dominant lattice preferred orientation in ferropericlase across the spin transition and in the low-spin state. Viscoplastic self-consistent polycrystal plasticity simulations suggest that this preferred orientation pattern is produced by {1 1 0}<1–10> slip. Analyzing our radial X-ray diffraction patterns using lattice strain theory, we evaluated the lattice d-spacings of ferropericlase and Mo as a function of the ψ angle between the compression direction and the diffracting plane normal. These analyses give the ratio between the uniaxial stress component (t) and the shear modulus (G) under constant stress condition, which represents a proxy for the supported differential stress and elastic strength. This ratio in the mixed-spin and low-spin states is lower than what is expected from previous studies of high-spin ferropericlase, indicating that the spin transition results in a reduced differential stress and elastic strength along with the volume reduction. The influence of the spin transition on the differential stress and strength of ferropericlase is expected to be less dominant across the wide spin transition zone at high pressure–temperature conditions relevant to the lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791. doi:10.1126/science.1081311

    Article  Google Scholar 

  • Birch F (1986) Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain. J Geophys Res 91:4949–4954. doi:10.1029/JB091iB05p04949

    Article  Google Scholar 

  • Chen J, Li L, Yu T, Long H, Weidner D, Wang L, Vaughan M (2006) Do Reuss and Voigt bounds really bound in high-pressure rheology experiments? J Phys Condens Matter 18:S1049–S1059. doi:10.1088/0953-8984/18/25/S11

    Article  Google Scholar 

  • Crowhurst J, Brown JM, Goncharov A, Jacobsen SD (2008) Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science 319:451–453. doi:10.1126/science.1149606

    Article  Google Scholar 

  • Duffy TS, Shen G, Shu J, Mao HK, Hemley RJ, Singh AK (1999) Elasticity, shear strength, and equation of state of molybdenum and gold from X-ray diffraction under nonhydrostatic compression to 24 GPa. J Appl Phys 86:6729–6736. doi:10.1063/1.371723

    Article  Google Scholar 

  • Fei Y, Zhang L, Corgne, Watson H, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg,Fe)O solid solutions. Geophys Res Lett 34:L17307. doi:10.1029/2007GL030712

  • Gavriliuk AG, Lin JF, Lyubutin IS, Struzhkin VV (2006) Optimization of the conditions of synchrotron Mössbauer experiment for studying electron transitions at high pressures by the example of (Mg,Fe)O magnesiowüstite. J Exp Theor Phys Lett 84:161–166. doi:10.1134/S0021364006150136

    Article  Google Scholar 

  • Goncharov AF, Struzhkin VV, Jacobsen SD (2006) Reduced radiative conductivity of low-spin (Mg,Fe)O in the lower mantle. Science 312:1205–1208. doi:10.1126/science.1125622

    Article  Google Scholar 

  • Heidelbach F, Stretton I, Langenhorst F, Mackwell S (2003) Fabric evolution during high shear–strain deformation of magnesiowüstite. J Geophys Res B 108:2154. doi:10.1029/2001JB001632

    Article  Google Scholar 

  • Hixson RS, Fritz JN (1992) Shock compression of tungsten and molybdenum. J Appl Phys 71:1721–1728. doi:10.1063/1.351203

    Article  Google Scholar 

  • Kantor IY, Dubrovinsky LS, McCammon CA (2006) Spin crossover in (Mg,Fe)O: a Mössbauer effect study with an alternative interpretation of X-ray emission spectroscopy data. Phys Rev B 73:100101. doi:10.1103/PhysRevB.73.100101

    Article  Google Scholar 

  • Karato S-I (1998) Seismic anisotropy in the deep mantle and the geometry of mantle convection. Pure Appl Geophys 151:565–587. doi:10.1007/s000240050130

    Article  Google Scholar 

  • Karato S-i (2008) Deformation of earth materials. Cambridge University Press, New York, p 463

    Google Scholar 

  • Keppler H, Kantor I, Dubrovinsky LS (2007) Optical absorption spectra of ferropericlase to 84 GPa. Am Min 92:433–436. doi:10.2138/am.2007.2454

    Article  Google Scholar 

  • Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals–application to zirconium alloys. Acta Metall Mater 41:2611–2624. doi:10.1016/0956-7151(93)90130-K

    Article  Google Scholar 

  • Li L, Weidner DJ, Chen J, Vaughan MT, Davis M, Durham WB (2004) X-ray strain analysis at high pressure: effect of plastic deformation in MgO. J Appl Phys 95:8357–8365. doi:10.1063/1.1738532

    Article  Google Scholar 

  • Lin JF, Tsuchiya T (2008) Spin transition of iron in the Earth’s lower mantle. Phys Earth Planet Inter 170:248–259. doi:10.1016/j.pepi.2008.01.005

    Article  Google Scholar 

  • Lin JF, Struzhkin VV, Jacobsen SD, Hu M, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in Earth’s lower mantle. Nature 436:377–380. doi:10.1038/nature03825

    Article  Google Scholar 

  • Lin JF, Gavriliuk AG, Struzhkin VV, Jacobsen SD, Sturhahn W, Hu M, Chow P, Yoo CS (2006a) Pressure-induced electronic spin transition of iron in magnesiowüstite-(Mg,Fe)O. Phys Rev B 73:113107. doi:10.1103/PhysRevB.73.113107

    Article  Google Scholar 

  • Lin JF, Jacobsen SD, Sturhahn W, Jackson JM, Zhao J, Yoo CS (2006b) Sound velocities of ferropericlase in Earth’s lower mantle. Geophys Res Lett 33:L22304. doi:10.1029/2006GL028099

    Article  Google Scholar 

  • Lin JF, Vankó G, Jacobsen SD, Iota V, Struzhkin VV, Prakapenka VB, Kuznetsov A, Yoo CS (2007a) Spin transition zone in Earth’s lower mantle. Science 317:1740–1743. doi:10.1126/science.1144997

    Article  Google Scholar 

  • Lin JF, Weir ST, Jackson DD, Evans WJ, Yoo CS (2007b) Electrical conductivity of the low-spin ferropericlase in the Earth’s lower mantle. Geophys Res Lett 34:L16305. doi:10.1029/2007GL030523

    Article  Google Scholar 

  • Lin JF, Watson HC, Vankó G, Alp EE, Prakapenka VB, Dera P, Struzhkin VV, Kubo A, Zhao J, McCammon C, Evans WJ (2008) Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nat Geosci 1:688–691. doi:10.1038/ngeo310

    Article  Google Scholar 

  • Long MD, Xiao X, Jiang Z, Evans B, S-i Karato (2006) Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D”. Phys Earth Planet Int 156:75–88. doi:10.1016/j.pepi.2006.02.006

    Article  Google Scholar 

  • Lutterotti L, Matthies S, Wenk H-R, Schultz AJ, Richardson JW (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594–600

    Article  Google Scholar 

  • Mao WL, Struzhkin VV, Baron AQR, Tsutsui S, Tommaseo CE, Wenk HR, Hu MY, Chow P, Sturhahn W, Shu J, Hemley RJ, Heinz DL, Mao HK (2008) Experimental determination of the elasticity of iron at high pressure. J Geophys Res 113:B09213

    Article  Google Scholar 

  • McCammon C, Kantor I, Narygina O, Rouquette J, Ponkratz U, Sergueev I, Mezouar M, Prakapenka V, Dubrovinsky L (2008) Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nat Geosci 1:684–687. doi:10.1038/ngeo309

    Article  Google Scholar 

  • McNamara AK, van Keken PE, Karato S-i (2002) Development of anisotropic structure in the Earth’s lower mantle by solid-state convection. Nature 416:310–314. doi:10.1038/416310a

    Article  Google Scholar 

  • Merkel S (2006) X-ray diffraction evaluation of stress in high pressure deformation experiments. J Phys Condens Matter 18:S949–S962. doi:10.1088/0953-8984/18/25/S03

    Article  Google Scholar 

  • Merkel S, Wenk HR, Shu J, Shen G, Gillet P, Mao HK, Hemley RJ (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res 107:2271. doi:10.1029/2001JB000920

    Article  Google Scholar 

  • Persson K, Bengtson A, Ceder G, Morgan D (2006) Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1–x,Fex)O system. Geophys Res Lett 33:L16306. doi:10.1029/2006GL026621

    Article  Google Scholar 

  • Ringwood AE (1982) Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics basalt petrogenesis and crustal evolution. J Geol 90:611–642

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925–946. doi:10.1107/S0567740869003220

    Article  Google Scholar 

  • Shieh SR, Duffy TS, Li B (2004) Strength and elasticity of SiO2 across the stishovite-CaCl2-type structural phase boundary. Phys Rev Lett 89:255507. doi:10.1103/PhysRevLett.89.255507

    Article  Google Scholar 

  • Singh AK, Balasingh C, Mao HK, Hemley RJ, Shu J (1998) Analysis of lattice strains measured under non-hydrostatic pressure. J Appl Phys 83:7567–7575. doi:10.1063/1.367872

    Article  Google Scholar 

  • Speziale S, Zha C-S, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528. doi:10.1029/2000JB900318

    Article  Google Scholar 

  • Speziale S, Lee VE, Clark SM, Lin JF, Pasternak MP, Jeanloz R (2007) Effects of Fe spin transition on the elasticity of (Mg,Fe)O magnesiowüstites and implications for the seismological properties of the Earth’s lower mantle. J Geophys Res 112:B10212. doi:10.1029/2006JB004730

    Article  Google Scholar 

  • Stretton I, Heidelbach F, Mackwell SJ, Langenhorst F (2001) Dislocation creep of magnesiowüstite (Mg0.8,Fe0.2O). Earth Planet Sci Lett 194:229–240. doi:10.1016/S0012-821X(01)00533-7

    Article  Google Scholar 

  • Sturhahn W, Jackson JM, Lin JF (2005) The spin state of iron in Earth’s lower mantle minerals. Geophys Res Lett 32:L12307. doi:10.1029/2005GL022802

    Article  Google Scholar 

  • Tommaseo CE, Devine J, Merkel S, Speziale S, Wenk H-R (2006) Texture development and elastic stresses in magnesiowüstite at high pressure. Phys Chem Miner 33:84–97. doi:10.1007/s00269-005-0054-x

    Article  Google Scholar 

  • Tsuchiya T, Wentzcovitch RM, da Silva CRS, de Gironcoli S (2006) Spin transition in magnesiowüstite in Earth’s lower mantle. Phys Rev Lett 96:198501. doi:10.1103/PhysRevLett.96.198501

    Article  Google Scholar 

  • Uchida T, Funamori N, Ohtani T, Yagi T (1995) Differential stress of MgO and Mg2SiO4 under uniaxial stress field: variation with pressure, temperature, and phase transition. High-pressure Sci Technol, AIRAPT-15 5:183–185

    Google Scholar 

  • Weaver CW, Paterson MS (1969) Deformation of cube-oriented MgO crystals under pressure. J Am Ceram Soc 52:293–302. doi:10.1111/j.1151-2916.1969.tb11929.x

    Article  Google Scholar 

  • Weidner DJ, Li L, Davis M, Chen J (2004) Effect of plasticity on elastic modulus measurements. Geophys Res Lett 31:1–4. doi:10.1029/2003GL019090

    Article  Google Scholar 

  • Wenk H-R, Matthies S, Donovan J, Chateigner D (1998) Beartex: a Windows-based program system for quantitative texture analysis. J Appl Cryst 31:262–269. doi:10.1107/S002188989700811X

    Article  Google Scholar 

  • Wenk H-R, Speziale S, McNamara AK, Garnero EJ (2006) Modeling lower mantle anisotropy development in a subducting slab. Earth Planet Sci Lett 245:302–314. doi:10.1016/j.epsl.2006.02.028

    Article  Google Scholar 

  • Yamazaki D, Karato S-i (2002) Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Phys Earth Planet Int 131:251–267. doi:10.1016/S0031-9201(02)00037-7

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge J. Hu, NSLS, and COMPRES for the use of the X17C synchrotron facilities. We thank J. Hu for helping with the data collection and J. Kung for providing the ferropericlase sample. We acknowledge D. Weidner, S.-i. Karato, and S. Merkel for constructive discussions. J.F.L. acknowledges financial support from NSF Earth Sciences (EAR-0838221) and Carnegie/DOE Alliance Center (CDAC) at Carnegie Institution of Washington. H.R.W. is appreciative for support from NSF (EAR 0836402), DOE-CDAC and LLNL-IGPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Fu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JF., Wenk, HR., Voltolini, M. et al. Deformation of lower-mantle ferropericlase (Mg,Fe)O across the electronic spin transition. Phys Chem Minerals 36, 585–592 (2009). https://doi.org/10.1007/s00269-009-0303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0303-5

Keywords

Navigation