Skip to main content
Log in

Chemical analysis for optimal synthesis of ferrihydrite-modified diatomite using soft X-ray absorption near-edge structure spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Effects of process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and chemical characteristics of ferrihydrite-modified diatomite are studied by using X-ray absorption near-edge structure spectroscopy. The spectra were recorded in total electron yield mode and/or fluorescence yield mode to investigate the chemical nature of Fe and Si on the surface and/or in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite on the surface of diatomite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer–Emmett–Teller specific surface area of ferrihydrite-modified diatomite decreased with the increasing FeCl2 concentration. The crystalline degree of ferrihydrite decreased with the increase of NaOH concentration. The high temperature calcination caused an energy shift in the Si L-edge spectra to the high energy side and a transformation of Si-containing ferrihydrite to crystallized hematite might occur when ferrihydrite-modified diatomite is calcined at 900°C. In this study, the optimal synthesis conditions for the ferrihydrite-modified diatomite with the least crystalline Si-containing ferrihydrite and the highest surface area were found to be as the follows: 0.5 M FeCl2 solution, 6 M NaOH solution and drying temperature of 50°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Degs YS, Khraisheh MAM, Tutunj MF (2001) Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res 35:3724–3728

    Article  Google Scholar 

  • Campbell AS, Schwertmann U, Stanjek H, Friedl J, Kyek A, Campbell PA (2002) Si incorporation into hematite by heating Si-ferrihydrite. Langmuir 18:7804–7809. doi:10.1021/la011741w

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) Iron oxide. VCH Weinheim, New York

    Google Scholar 

  • Cramer SP, Wang H, Bryant C, Legros M, Horne C, Patel D, Ralston C, Wang X (1998) Soft X-ray absorption spectroscopy: application to bioinorganic chemistry. In: Solomon EI, Hodgson KO (eds) Spectroscopic methods in bioorganic chemistry. American Chemical Society, pp 154–178

  • Ford RG, Wilkin RT, Hernandez G (2006) Arsenic cycling within the water column of a small lake receiving contaminated ground-water discharge. Chem Geol 228:137–155. doi:10.1016/j.chemgeo.2005.11.021

    Article  Google Scholar 

  • Garvie LAJ, Buseck PR (1998) Ratios of ferrous to ferric iron from nanometer-sized areas in minerals. Nature 396:667–670. doi:10.1038/25334

    Article  Google Scholar 

  • Garvie LAJ, Buseck PR (1999) Bonding in silicate: investigation of the Si L2,3 edge by parallel electron energy-loss spectroscopy. Am Mineral 84:946–964

    Google Scholar 

  • Gautier J, Grosbois C, Courtin-Normade A, Floc’H JP, Martin F (2006) Transformation of natural As-associated ferrihydrite downstream of a remediated mining site. Eur J Mineral 18:187–195. doi:10.1127/0935-1221/2006/0018-0187

    Article  Google Scholar 

  • Glasauer SM, Hug P, Weidler PG, Gehring AU (2000) Inhibition of sintering by Si during the conversion of Si-rich ferrihydrite to hematite. Clays Clay Miner 48:51–56. doi:10.1346/CCMN.2000.0480106

    Article  Google Scholar 

  • Harp GR, Han ZL, Tonner BP (1989) X-ray absorption near edge structures of intermediate oxidation states of silicon in silicon oxides during thermal desorption. J Vac Sci Technol A 8:2566–2569. doi:10.1116/1.576737

    Article  Google Scholar 

  • Harp GR, Saldin DK, Tonner BP, Tonner J (1993) Finite-size effects and short-range crystalline order in Si and SiO2 studied by X-ray absorption fine structure spectroscopy. J Phys Condens Matter 5:5377–5388. doi:10.1088/0953-8984/5/31/003

    Article  Google Scholar 

  • Hu YF, Boukherroub R, Sham TK (2004) Near edge X-ray absorption fine structure spectroscopy of chemically modified porous silicon. J Electron Spectrosc Relat Phenom 135:143–147. doi:10.1016/j.elspec.2004.02.162

    Article  Google Scholar 

  • Hu YF, Zuin L, Wright G, Igarashi R, McKibben M, Wilson T, Chen S, Johnson T, Maxwell D, Sham TK, Reininger R (2007) Commissioning and performance of the VLS-PGM beamline at the Canadian Light Source. Rev Sci Instrum 78(083109):1–5

    Google Scholar 

  • Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2585. doi:10.1021/cr970105t

    Article  Google Scholar 

  • Karim Z (1984) Characteristics of ferrihydrite formed by oxidation of FeCl2 solutions containing different amounts of silica. Clays Clay Miner 32:181–184. doi:10.1346/CCMN.1984.0320304

    Article  Google Scholar 

  • Kasrai M, Yin Z, Bancroft GM, Tan KH (1993) X-ray fluorescence measurements of X-ray absorption near edge structure at the Si, P, and S L edges. J Vac Sci Technol A 11:2694–2699. doi:10.1116/1.578628

    Article  Google Scholar 

  • Kasrai M, Brunner RW, Bancroft GM, Lennard WN, Bardwell JA, Tan KH (1996) Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Appl Surf Sci 99:303–312. doi:10.1016/0169-4332(96)00454-0

    Article  Google Scholar 

  • Kawai J, Mizutani Y, Sugimura T, Sai M, Hignchi T, Harada Y, Ishiwata Y, Fukushima A, Fujisawa M, Watanabe M, Maeda K, Shiu S, Gohshi Y (2000) High resolution soft X-ray absorption spectroscopy for the chemical state analysis of Mn. Spectrochim Acta, B At Spectrosc 55:1385–1395. doi:10.1016/S0584-8547(00)00238-X

    Article  Google Scholar 

  • Khraisheh MAM, Al-Degs YS, Mcurim WAM (2004) Remediation of wastewater containing heavy metals using raw and modified diatomite. J Chem Eng 99:177–184. doi:10.1016/j.cej.2003.11.029

    Article  Google Scholar 

  • Kuiper P, Searle BG, Rudolf P, Tjeng LH, Chen CT (1993) X-ray magnetic dichroism of antiferromagnet Fe2O3: The orientation of magnetic moments observed by Fe 2p X-ray absorption spectroscopy. Phys Rev Lett 70:1549–1552. doi:10.1103/PhysRevLett.70.1549

    Article  Google Scholar 

  • Kukkadapu RK, Zachara JM, Fredrickson JK, Smith SC, Dohnalkova AC, Russell CK (2003) Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am Mineral 88:1903–1914

    Google Scholar 

  • Kumar S, Alimuddin KK, Kumor R, Thakur P, Chae KH, Augadi B, Choi WK (2007) Electron transport, magnetic and electronic structure studies of Mg0.95Mn0.05Fe2−2xTi2xO4±δ (0 ≤ x≤0.5) ferrites. J Phys Condens Matter 19:476210–476224. doi:10.1088/0953-8984/19/47/476210

    Article  Google Scholar 

  • Li D, Bancroft GM, Fleet ME (1996) Coordination of Si in Na2O-SiO2-P2O5 glasses Si K- and L-edge XANES. Am Mineral 81:111–118

    Google Scholar 

  • Mayer TD, Jarrell WM (1996) Formation and stability of iron (II) oxidation products under natural concentrations of dissolved silica. Water Res 30:1208–1214. doi:10.1016/0043-1354(95)00265-0

    Article  Google Scholar 

  • Mo SD, Ching WY (2001) X-ray absorption near-edge structure in alpha-quartz and Stishoite: ab initio calculation with core-hole interaction. Appl Phys Lett 78:3809–3811. doi:10.1063/1.1378311

    Article  Google Scholar 

  • Penn RL, Erbs JJ, Gulliver DM (2006) Controlled growth of alpha-FeOOH nanorods by exploiting-oriented aggregation. J Cryst Growth 293:1–4. doi:10.1016/j.jcrysgro.2006.05.005

    Article  Google Scholar 

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci USA 105:17362–17366. doi:10.1073/pnas.0806604105

    Article  Google Scholar 

  • Regier T, Krochak J, Sham TK, Hu YF, Blyth RIR (2007) Performance and capabilities of the Canadian Dragon: the SGM beamline at the Canadian Light Source. Nucl Instrum Methods Phys Res Sect A 582:93–95. doi:10.1016/j.nima.2007.08.071

    Article  Google Scholar 

  • Rhoton FE, Bigham JM (2005) Phosphate adsorption by ferrihydrite-amended soils. Environ Qual 34:890–896. doi:10.2134/jeq2004.0176

    Article  Google Scholar 

  • Seehra MS, Roy P, Raman A, Manivannan A (2004) Structural investigation of synthetic ferrihydrite nanoparticles doped with Si. Solid State Commun 130:597–601. doi:10.1016/j.ssc.2004.03.022

    Article  Google Scholar 

  • Soldatov AV, Kasrai M, Bancroft GM (2000) Unoccupied electronic states of stishovite: X-ray absorption fine structure theoretical analysis. Solid State Commun 115:687–692. doi:10.1016/S0038-1098(00)00261-1

    Article  Google Scholar 

  • Tsai HM, Ray SC, Pao CW, Chiou JW, Huang CL, Du CH, Pong WF, Tsai MH, Fukano A, Oyanagi H (2008) Enhancement of Si–O hybridization in low-temperature grown ultraviolet photo-oxidized sio2 film observed by x-ray absorption and photoemission spectroscopy. J Appl Phys 103:013704. doi:10.1063/1.2828144

    Article  Google Scholar 

  • Urano K, Tachikawa H (1991) Process development for removal and recovery of phosphorus from wastewater by a new adsorbent. 1. Preparation method and adsorption capability of a new adsorbent. Ind Eng Chem Res 30:1893–1896. doi:10.1021/ie00056a032

    Article  Google Scholar 

  • Vempati RK, Loeppert RH (1989) Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite. Clays Clay Miner 37:273–279. doi:10.1346/CCMN.1989.0370312

    Article  Google Scholar 

  • Wilks RG, MacNaughton HB, Kraatz H-B, Regier T, Moewes A (2006) Combined X-ray absorption spectroscopy and density functional theory examination of ferrocane-labeled peptides. J Phys Chem B 110:5955–5965. doi:10.1021/jp056573l

    Article  Google Scholar 

  • Wu ZY, Jollet F, Seifert F (1998) Electronic structure analysis of alpha-SiO2 via X-ray absorption near-edge structure at the Si K, L2,3 and O K-edges. J Phys Condens Matter 10:8083–8092. doi:10.1088/0953-8984/10/36/016

    Article  Google Scholar 

  • Xiong W, Peng J (2008) Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Res 42:4869–4877. doi:10.1016/j.watres.2008.09.030

    Article  Google Scholar 

  • Zhao J, Huggins FE, Feng Z, Huffman GP (1994) Ferrihydrite: Surface structure and its effect on phase transformation. Clays Clay Miner 42:737–746. doi:10.1346/CCMN.1994.0420610

    Article  Google Scholar 

Download references

Acknowledgments

This research project was supported through a discovery research grant from the Natural Sciences and Engineering Research Council of Canada and an international research grant from China. The authors are grateful to D. Fisher, technologist at the University of Saskatchewan, for his assistance in the environmental laboratory. We also would like to express our thanks to Drs. T. Regier and L. Zuin for their assistance at the Canadian Light Source Inc. where the XANES synchrotron experiments have been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, W., Peng, J. & Hu, Y. Chemical analysis for optimal synthesis of ferrihydrite-modified diatomite using soft X-ray absorption near-edge structure spectroscopy. Phys Chem Minerals 36, 557–566 (2009). https://doi.org/10.1007/s00269-009-0301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0301-7

Keywords

Navigation