Skip to main content

Advertisement

Log in

The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around ~3.2 and ~7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/cP21/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pressure across the transition. A modified Landau free energy expansion in terms of a one component order parameter has been developed and tested against these experimentally determined data. The Landau solution provides a much better reproduction of the observed anomalies than any equation-of-state fit to data sets truncated below and above P tr, thus giving Landau parameters of K 0 = 138.3(2) GPa, K′ = 7.46(5), λ V  = 33.6(2) GPa, a = 0.486(3), b = −29.4(6) GPa and c = 551(11) GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan DR, Miletich R, Angel RJ (1996) A diamond-anvil cell for single-crystal X-ray diffraction studies to pressures in excess of 10 GPa. Rev Sci Instrum 67:840–842. doi:10.1063/1.1146820

    Article  Google Scholar 

  • Angel RJ, Hugh-Jones DA (1994) Equations of state of orthoenstatite, MgSiO3. Am Mineral 87:558–561

    Google Scholar 

  • Angel RJ, Jackson JM (2002) Elasticity and equation of state of orthoenstatite, MgSiO3. Am Mineral 87:558–561

    Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Cryst 30:461–466. doi:10.1107/S0021889897000861

    Article  Google Scholar 

  • Angel RJ, Downs RT, Finger LW (2000) High-temperature-high-pressure diffractometry. Rev Mineral Geochem 41:559–596

    Google Scholar 

  • Arlt T, Angel RJ (2000a) Displacive phase transitions in C-centered clinopyroxenes: spodumene, LiScSi2O6, and ZnSiO3. Phys Chem Miner 27:719–731. doi:10.1007/s002690000116

    Article  Google Scholar 

  • Arlt T, Angel RJ (2000b) Pressure buffering in a diamond-anvil cell. Mineral Mag 64:241–245. doi:10.1180/002646100549337

    Article  Google Scholar 

  • Carpenter MA (2000) Strain and elasticity at structural phase transitions. Rev Mineral Geochem 39:35–64

    Google Scholar 

  • Carpenter MA, Salje EKH (1998) Elastic anomalies in minerals due to structural phase transitions. Eur J Mineral 10:693–812

    Google Scholar 

  • Carpenter MA, Salje EKH, Graeme-Barber A (1998) Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. Eur J Mineral 10:621–691

    Google Scholar 

  • Carpenter MA, Hemley RJ, Mao HK (2000) High-pressure elasticity of stishovite and the P42/nmn-Pnnm phase transition. J Geophys Res 105:10807–10816. doi:10.1029/1999JB900419

    Article  Google Scholar 

  • Gatta GD, Boffa-Ballaran T, Iezzi G (2005) High-pressure X-ray and Raman study of a ferrian and magnesian spodumene. Phys Chem Miner 32:132–139. doi:10.1007/s00269-005-0450-2

    Article  Google Scholar 

  • Jackson MJ, Sinogeikin SV, Carpenter MA, Bass JD (2004) Novel phase transition in orthoenstatite. Am Mineral 89:239–245

    Google Scholar 

  • King HE, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Cryst 12:374. doi:10.1107/S0021889879012723

    Article  Google Scholar 

  • Kung J, Li B, Liebermann RC (2003) Anomalous elasticity behavior in orthoenstatite at high pressure: Onset of phase transition to high-pressure clinoenstatite. Geophys Res Abstr 5:12376

    Google Scholar 

  • Kung J, Li B, Uchida T, Wang Y, Neuville D, Liebermann RC (2004) In situ measurements of sound velocities and densities across the orthopyroxene → high-pressure clinopyroxene transition in MgSiO3 at high pressure. Phys Earth Planet Inter 147:27–44. doi:10.1016/j.pepi.2004.05.008

    Article  Google Scholar 

  • Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49:3276–3283. doi:10.1063/1.325277

    Article  Google Scholar 

  • Mendelssohn MJ, Price GD (1997) Computer modeling of a pressure induced phase change in clinoenstatite pyroxenes. Phys Chem Miner 25:55–62. doi:10.1007/s002690050086

    Article  Google Scholar 

  • Miletich R, Reifler H, Kunz M (1999) The “ETH diamond-anvil cell” design for single-crystal XRD at non-ambient conditions. Acta Crystallogr A 55:99–100

    Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. Rev Mineral Geochem 41:445–519

    Google Scholar 

  • Nestola F, Boffa Ballaran T, Ohashi H (2008) The high-pressure C2/c-P21/c phase transition along the LiAlSi2O6–LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484. doi:10.1007/s00269-008-0242-6

    Article  Google Scholar 

  • Pommier CJS, Denton MB, Downs RT (2003) Raman spectroscopic study of spodumene (LiAlSi2O6) through the pressure-induced phase change from C2/c to P21/c. J Raman Spectrosc 34:769–775. doi:10.1002/jrs.1051

    Article  Google Scholar 

  • Ralph RL, Finger LW (1982) A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constraints. J Appl Crystallogr 15:537–539. doi:10.1107/S0021889882012539

    Article  Google Scholar 

  • Ross NL, Reynard B (1999) The effect of iron on the P21/c to C2/c transition in (Mg,Fe)SiO3 clinopyroxenes. Eur J Mineral 11:585–589

    Google Scholar 

  • Schranz W, Tröster A, Koppensteiner J, Miletich R (2007) Finite strain Landau theory of high-pressure phase transformations. J Phys Condens Matter 19:275202. doi:10.1088/0953-8984/19/27/275202

    Article  Google Scholar 

  • Sondergeld P, Li B, Schreuer J, Carpenter MA (2006) Discontinuous evolution of single-crystal elastic constants as a function of pressure through the C2/cP21/c phase transition in spodumene (LiAlSi2O6). J Geophys Res 111:B07202. doi:10.1029/2005JB004098

    Article  Google Scholar 

  • Stokes HT, Hatch DM, Campbell BJ (2007) ISOTROPY. http://stokes.byu.edu/isotropy.html

  • Tröster A, Schranz W, Miletich R (2002) How to couple Landau theory to an equation of state. Phys Rev Lett 88:55503 1–12

    Google Scholar 

  • Webb SL, Jackson I (1993) The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe0.2)SiO3. Eur J Mineral 5:1111–1119

    Google Scholar 

Download references

Acknowledgments

This research was supported within the scope of the project grant MI 605/2-2 of the Deutsche Forschungsgemeinschaft (DFG) and support by the Austrian FWF (P19284-N20) is gratefully acknowledged. Special thanks are due to the Materials Research Group at GSI, Gesellschaft für Schwerionenforschung mbH, Darmstadt for providing us the possibility to use the Raman spectrometer for this study. The authors also thank Fabrizio Nestola and Michael Carpenter for reviewing and providing valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Ullrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, A., Schranz, W. & Miletich, R. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study. Phys Chem Minerals 36, 545–555 (2009). https://doi.org/10.1007/s00269-009-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0300-8

Keywords

Navigation