Skip to main content
Log in

Theoretical investigations of the local structures and the g factors for 3d9 ions in CdS

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The local structures and the g factors g // and g for the isoelectronic 3d9 ions Cu2+ and Ni+ in CdS are theoretically investigated from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedral environments. In consideration of significant covalency of the [MS4] combinations (M = Cu and Ni), the ligand orbital and spin–orbit coupling contributions are taken into account using the cluster approach. Based on the studies, the substitutional impurity Cu2+ (or Ni+) on Cd2+ site is found to undergo a small inward displacement 0.026 Å (or a slight outward shift 0.017 Å) towards (or away from) the ligand triangle along C 3 axis. The theoretical g factors for both ions based on the above impurity displacements are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, London

    Google Scholar 

  • Atay F, Kose S, Bilgin V, Akyuz I (2003) CdS:Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration. Mater Lett 57:3461–3472. doi:10.1016/S0167-577X(03)00100-9

    Article  Google Scholar 

  • Bindilatti V, Anisimov AN, Oliveira NF, Shapira JY, Goiran M, Yang F, Isber S, Averous M, Demianiuk M (1994) Axial anisotropy of Co2+ in CdS from magnetization-step and high-frequency EPR. Phys Rev B 50:16464–16467. doi:10.1103/PhysRevB.50.16464

    Article  Google Scholar 

  • Bozdog C, Chow KH, Watkins GD, Sunakawa H, Kuroda N, Usui A (2000) Electron paramagnetic resonance of Cu(d9) in GaN. Phys Rev B 62:12923–12926. doi:10.1103/PhysRevB.62.12923

    Article  Google Scholar 

  • Clementi E, Raimondi DL (1963) Atomic screen constants from SCF functions. J Chem Phys 38:2686–2689. doi:10.1063/1.1733573

    Article  Google Scholar 

  • Clementi E, Raimondi DL, Reinhardt WP (1967) Atomic screen constants from SCF functions. II. Atoms with 37 to 86 elements. J Chem Phys 47:1300–1307. doi:10.1063/1.1712084

    Article  Google Scholar 

  • Dong HN, Wu XX, Wu SY, Zheng WC (2002) Studies on defect structures of Mn2+ and Fe3+ impurity centers in ZnO crystals. Acta Phys Sin 51:616–619

    Google Scholar 

  • Edgar A (1976) Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts. J Phys Chem 9:4303–4313

    Google Scholar 

  • Fazzio A, Caldas MJ, Zunger A (1984a) Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors. Phys Rev B 30:3430–3455

    Article  Google Scholar 

  • Fazzio A, Caldas MJ, Zunger A (1984b) Separation of one-electron and many-electron effects in the excitation-spectra of 3d impurities in semiconductors. Phys Rev B 29:5999–6002. doi:10.1103/PhysRevB.29.5999

    Article  Google Scholar 

  • Franc J, Hlavka J, Nespurek S, Zhivkov I (2006) Photoelectrical properties of doped cadmium sulphide powders. Sol Energy Mater Sol Cells 90:2924–2933. doi:10.1016/j.solmat.2006.05.008

    Article  Google Scholar 

  • Gemma N (1984) Electronic states of transition-metal impurities in II–VI-semiconductor and III–V-semiconductors. J Phys Chem 17:2333–2356

    Google Scholar 

  • Ghiordanescu V, Sima M, Enculescu I, Grecu MN, Neumann R (2005) Photoluminescence of manganese- and copper-doped CdS nanowires. Phys Status Solid A 202:449–454. doi:10.1002/pssa.200406927

    Article  Google Scholar 

  • Griffith JS (1964) The theory of transition-metal ions. Cambridge university press, London

    Google Scholar 

  • Heltz R, Hoffmann A, Broser I (1993) Magneto-optics of Ni-bound shallow states in ZnS and CdS. Phys Rev B 48:8672–8682. doi:10.1103/PhysRevB.48.8672

    Article  Google Scholar 

  • Hodgson EK, Fridovich I (1973) Reversal of superoxide dismutase reaction. Biochem Biophys Res Commun 54:270–274. doi:10.1016/0006-291X(73)90918-2

    Article  Google Scholar 

  • Hoffmann A, Broser I, Thurian P, Heitz R (1990) Fine-structure of the Cu2+ center in CdS. J Cryst Growth 101:532–535. doi:10.1016/0022-0248(90)91031-K

    Article  Google Scholar 

  • Jorgensen CK (1962) Absorption spectra and chemical bonding in complexes. Pergamon Press, Oxford

    Google Scholar 

  • Kim YI, Page K and Seshadri R (2007) Synchrotron X-ray study of polycrystalline wurtzite Zn1–x Mg x O (0 ≤ x ≤ 0.15): evolution of crystal structure and polarization. Appl Phys Lett 90:101904-1-3

    Google Scholar 

  • Mandal P, Talwar SS, Major SS, Srinivasa RS (2008) Orange–red luminescence from Cu doped CdS nanophosphor prepared using mixed Langmuir–Blodgett multilayers. J Chem Phys 128:114703-1-7

    Google Scholar 

  • Newman DJ, Ng B (1989) The superposition model of crystal field. Rep Prog Phys 52:699–763. doi:10.1088/0034-4885/52/6/002

    Article  Google Scholar 

  • Rudowicz C, Yang ZY, Yeung YY, Qin J (2004) Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin-other-orbit interactions for d2 and d8 ions at low symmetry C 3 symmetry sites: V 3+ in Al2O3. J Phys Chem Solids 64:1419–1428. doi:10.1016/S0022-3697(03)00190-2

    Article  Google Scholar 

  • Schulz M, Wepfer GG (1972) Paramagnetic-resonance of nickel doped ZnS and CdS crystals. Solid State Commun 10:405–408. doi:10.1016/0038-1098(72)90907-6

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Suda T, Bube RH (1981) Infrared quenching of photocapacitance in Cu x S–CdS solar-cells. J Appl Phys 52:6218–6223. doi:10.1063/1.328562

    Article  Google Scholar 

  • Tani Y, Fun H, Umezawa Y (1998) A cation selective electrode based on copper(II) and nickel(II) hexacyanoferrates: dual response mechanisms, selective uptake or adsorption of analyte cations. Electrochim Acta 43:3431–3441. doi:10.1016/S0013-4686(98)00089-9

    Article  Google Scholar 

  • Wei LH, Wu SY, Zhang ZH, Wang H, Wang XF (2008) Investigations on the local structure and the EPR parameters for Cu2+-doped GaN. Mod Phys Lett B 22:1739–1747. doi:10.1142/S0217984908016431

    Article  Google Scholar 

  • Yang ZY (2000) An investigation of the EPR zero-field splitting of Cr3+ ions at the tetragonal site and the Cd2+ vacancy in RbCdF3:Cr3+ crystals. J Phys Condens Matter 12:4091–4096. doi:10.1088/0953-8984/12/17/314

    Article  Google Scholar 

  • Yang ZY, Rudowicz C, Yeung YY (2004) Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B 348:151–159. doi:10.1016/j.physb.2003.11.085

    Article  Google Scholar 

  • Zheng WC, Wu SY, Dong HN, Zi J (2002) Studies of electron paramagnetic resonance parameters and defect structures for Ti2+ and V3+ ions in CdS crystals. Spectrochim Acta [A] 58:537–541. doi:10.1016/S1386-1425(01)00565-0

Download references

Acknowledgment

This work was financially supported by the Support Program for Academic Excellence of UESTC and Natural Science Foundation Project of CQ (CSTC 2008BB4083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S.Y., Zhang, H.M., Dong, H.N. et al. Theoretical investigations of the local structures and the g factors for 3d9 ions in CdS. Phys Chem Minerals 36, 483–487 (2009). https://doi.org/10.1007/s00269-009-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0294-2

Keywords

Navigation