Skip to main content
Log in

Chromium speciation in oxide-type compounds: application to minerals, gems, aqueous solutions and silicate glasses

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Cr K-edge XANES spectra were obtained for a variety of Cr-bearing model compounds containing Cr(II), Cr(III), Cr(IV), Cr(V) and Cr(VI), in which the Cr-site symmetry is D4h, Oh and Td. The centroid position of the pre-edge feature is a better indicator of the Cr valence than the edge position. In Cr-rich oxides, higher-energy transitions must be excluded in order to refine a robust valence for Cr. The pre-edge for chromates is not unique and varies as a function of the CrO4 2− moiety distortion, which is often related to Cr-polymerization (monochromate vs. dichromate). Both the analogy with the Mn K-pre-edge information and ab initio FEFF calculations of the pre-edge feature for Cr(III) and Cr(VI) confirm the experimental trends. This methodology is applied to the Cr K-edge pre-edge feature collected in gems (emerald, spinel and ruby), the layered minerals fuchsite and kämmererite, two Cr-bearing aqueous solutions and a set of sodo-calcic silicate glasses used for bottling sparkling white wine. In emerald and fuchsite, the Cr-site is differently distorted than its ruby or spinel counterpart. In a Cr(III)-bearing aqueous solution and sodo-calcic glass, no evidence for Cr(III) with Td and C3v symmetry is detected. However, minor amounts of chromate moieties (most likely monomeric) are detected in a glass synthesized in air. Preliminary spectra for the wine bottle glass suggest that only trace amounts of chromates might possibly be present in these glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson LCD, Kent DA, Davis JA (1992) Reduction of Cr(VI) under mildly reducing conditions in a sand and gravel aquifer. In: Kharaka YK, Maest AS (eds) Water-rock interaction, pp 495–498

  • Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys Rev B 58:7565–7576. doi:10.1103/PhysRevB.58.7565

    Article  Google Scholar 

  • Bajt S, Clark SB, Sutton SR, Rivers ML, Smith JV (1993) Synchrotron X-ray microprobe determination of chromate content using X-ray absorption near-edge structure. Anal Chem 65:1800–1804. doi:10.1021/ac00061a026

    Article  Google Scholar 

  • Beale AM, Gradnjean D, Kornatowski J, Glatzel P, de Groot FMF, Weckhuysen BM (2006) Unusual coordination behavior of Cr in microporous aluminophosphates. J Phys Chem B 110:716–722. doi:10.1021/jp0531006

    Article  Google Scholar 

  • Bel’skii HL, Rossman GR, Prewitt CT, Gasparik T (1984) Crystal structure and optical spectroscopy (300 to 2200 nm) of CaCrSi4O10. Am Mineral 69:771–776

    Google Scholar 

  • Belokoneva EL, Shcherbakova Yu K (2003) Electron density in synthetic escolaite Cr2O3 with a corundum structure and its relation to antiferromagnetic properties. Zh Neorganicheskoi Khim 48:960–968

    Google Scholar 

  • Berry AJ, O’Neil HSC (2004) A XANES determination of the oxidation state of chromium in silicate glasses. Am Mineral 89:790–798

    Google Scholar 

  • Brawer SA, White WB (1977) Optical properties of trivalent chromium in silicate glasses. A study of energy levels in the crossing region. J Chem Phys 57:2043–2055. doi:10.1063/1.435088

    Article  Google Scholar 

  • Brigatti MF, Lugli C, Cibin G, Marcelli A, Giuli G, Paris E, Mottana A, Wu ZY (2000) Reduction and sorption of chromium by Fe(II)-bearing phyllosilicates: chemical treatments and X-ray absorption spectroscopy (XAS) studies. Clays Clay Miner 48:272–281. doi:10.1346/CCMN.2000.0480214

    Article  Google Scholar 

  • Brigatti MF, Galli E, Medici L, Poppi L, Cibin G, Marcelli A, Mottana A (2001) Chromium-containing muscovite: crystal chemistry and XANES spectroscopy. Eur J Mineral 13:377–389. doi:10.1127/0935-1221/01/0013-0377

    Article  Google Scholar 

  • Brown GE Jr, Mills BA (1986) High-temperature structure and crystal chemistry of hydrous alkali-rich beryl from the Harding pegmatite, Taos County, New Mexico. Am Mineral 71:547–556

    Google Scholar 

  • Brown GE Jr, Calas G, Farges F (1995) X-ray scattering and spectroscopy studies of molten silicates. In: Stebbins JF, Dingwell DB, McMillan PF (eds) Structure, dynamics, and properties of silicate melts. Reviews in mineralogy, vol 32. Mineralogical Society of America, Washington, DC, pp 317–408

  • Brown GE Jr, Chambers SA, Amonette JE, Rustad JR, Kendelewicz T, Liu P, Doyle CS, Grolimund D, Foster-Mills NS, Joyce SA, Thevuthasan S (2001) Interaction of water and aqueous chromium ions with iron oxide surfaces. American Chemical Society Symposium Series 778. In: Eller PG, Heineman WR (eds) Nuclear Site Remediation—First Accomplishments of the Environmental Management Science Program. American Chemical Society, Columbus, pp 212–246

  • Bugaev LA, Farges F, Rusakova EB, Sokolenko AP (2005) The coordination environment of Ti in crystalline and amorphous CaTiSiO5 (metamict and glassy): a new approach via the FT-analysis of the Ti K-edge XANES. Phys Scr T 115:168–171. doi:10.1238/Physica.Topical.115a00168

    Article  Google Scholar 

  • Burdett JK, Miller GJ, Richardson JW Jr, Smith JV (1988) Low-temperature neutron powder diffraction study of CrO2 and the validity of the Jahn-Teller viewpoint. J Am Chem Soc 110:8064–8071. doi:10.1021/ja00232a018

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, Cambridge, 575 p

  • Cardelli A, Cibin G, Benfatto M, Della Longa S, Brigatti MF, Marcelli A (2003) A crystal-chemical investigation of Cr substitution in muscovite by XANES spectroscopy. Phys Chem Miner 30:54–58. doi:10.1007/s00269-002-0289-8

    Article  Google Scholar 

  • Charlet L, Manceau A (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. J Colloid Interface Sci 148:443–458. doi:10.1016/0021-9797(92)90182-L

    Article  Google Scholar 

  • Codd R, Dillon CT, Levina A, Lay PA (2001) Studies on the genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev 216–217:537–582. doi:10.1016/S0010-8545(00)00408-2

    Article  Google Scholar 

  • Cotton FA, Deboer BG, Laprade MD, Pipal JR, Ucko DA (1971) The crystal and molecular structures of dichromium tetra-acetate dihydrate and dirhodium tetra-acetate dihydrate. Acta Crystallogr B 27:1664–1671. doi:10.1107/S0567740871004527

    Article  Google Scholar 

  • de Flora S, Camoiran A, Bagnasco M, Zanacchi P (1995) Chromium and carcinogenesis. In: Berthon G (ed) Handbook of metal-ligand interactions in biological fluids. Bioinorganic medicine. Marcel Dekker, New York, pp 1020–1036

    Google Scholar 

  • Edgar A, Hutton DR (1978) Exchange-coupled pairs of Cr3+ ions in emerald (in EPR spectra). J Phys C Solid State Phys 11:5051–5063. doi:10.1088/0022-3719/11/24/033

    Article  Google Scholar 

  • Edwards CM, Haines J, Butler IS, Leger JM (1999) High pressure X-ray diffraction study of potassium chromate: pressure-induced orientational disorder and its implications for amorphization in A2BX4 compounds. J Phys Chem Solids 60:529–538. doi:10.1016/S0022-3697(98)00302-3

    Article  Google Scholar 

  • Elderfield H (1970) Chromium speciation in sea-water. Earth Planet Sci Lett 9:10–16. doi:10.1016/0012-821X(70)90017-8

    Article  Google Scholar 

  • Farges F (2005) Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys Rev B 71:155109. doi:10.1103/PhysRevB.71.155109

    Article  Google Scholar 

  • Farges F, Brown GE Jr (2007) Coordination environments of highly charged cations (Ti, Cr, and Light REE’s) in borosilicate glass/melts to 1120°C. AIP Conf Proc 882:208–210. doi:10.1063/1.2644476

    Article  Google Scholar 

  • Farges F, Brown GE Jr, Navrotsky A, Gan H, Rehr JJ (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts. II. Glasses under ambient conditions. Geochim Cosmochim Acta 60:3029–3054

    Google Scholar 

  • Farges F, Brown GE Jr, Petit P-E, Munoz M (2001) Transition elements in water-bearing silicate glasses/melts. Part I. A high resolution and anharmonic analysis of Ni coordination environments in crystals, glasses, and melts. Geochim Cosmochim Acta 86:1665–1678

    Google Scholar 

  • Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) Redox and speciation of iron in natural and synthetic sodo-calcic glasses. An high-resolution XANES and PCA spectroscopy study. J Non-Cryst Solids 344:176–188. doi:10.1016/j.jnoncrysol.2004.07.050

    Article  Google Scholar 

  • Farges F, Etcheverry M-P, Haddi A, Trocellier P, Curti E, Brown GE Jr (2007) Durability of silicate glasses: an historical approach. AIP Conf Proc 882:44–50. doi:10.1063/1.2644427

    Article  Google Scholar 

  • Faye GH (1968) The optical absorption spectra of certain transition metal ions in muscovite, lepidolite, and fuchsite. Can J Earth Sci 5:31–38

    Google Scholar 

  • Fendorf SE, Guangchao L (1996) Kinetics of chromate reduction by ferrous iron. Environ Sci Technol 30:1614–1617. doi:10.1021/es950618m

    Article  Google Scholar 

  • Fendorf SE, Lamble GM, Stapleton MG, Kelley MJ, Sparks DL (1994) Mechanisms of chromium(III) sorption on silica. 1. Cr(III) surface structure derived by extended X-ray absorption fine structure spectroscopy. Environ Sci Technol 28:284–289. doi:10.1021/es00051a015

    Article  Google Scholar 

  • Fendorf S, Wielinga BW, Hansel CM (2000) Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int Geol Rev 42:691–701

    Article  Google Scholar 

  • Fendorf S, LaForce MJ, Li GC (2004) Temporal changes in soil partitioning and bioavailability of arsenic, chromium, and lead. J Environ Qual 33:2049–2055

    Article  Google Scholar 

  • Fortner JA, Buck EC, Ellison AJG, Bates JK (1997) EELS analysis of redox in glasses for plutonium immobilization. Ultramicroscopy 67:77–81

    Google Scholar 

  • Galoisy L, Calas G (1991) Spectroscopic evidence for five-coordinated nickel in CaNiSi2O6 glass. Am Mineral 76:1777–1780

    Google Scholar 

  • García-Lastra JM, Barriuso MT, Aramburu JA, Moreno M (2005) Origin of the different color of ruby and emerald. Phys Rev B 72:113104–4. doi:10.1103/PhysRevB.72.113104

    Google Scholar 

  • Gardea-Torresdey JL, Dokken K, Tiemann KJ, Parsons JG, Ramos J, Pingitore NE, Gamez G (2002) Infrared and X-ray absorption spectroscopic studies on the mechanism of chromium(III) binding to alfalfa malone biomass. Microchem J 71:157–166. doi:10.1016/S0026-265X(02)00007-3

    Article  Google Scholar 

  • Gaudry E (2004) Structure locale autour des impuretés dans les gemmes, étudiée par spectroscopies et calculs ab initio. Thesis, University of Paris 6, 216 p (in French)

  • Gaudry E, Kiratisin A, Sainctavit P, Brouder C, Mauri F, Ramos A, Rogalev A, Goulon J (2003) Structural and electronic relaxations around substitutional Cr3+ and Fe3+ ions in corundum. Phys Rev B 67:094108. doi:10.1103/PhysRevB.67.094108

    Article  Google Scholar 

  • Gaudry E, Cabaret D, Sainctavit P, Brouder C, Mauri F, Rogalev A, Goulon J (2005a) Ab initio calculation of the Cr K edge in α-Al2O3:Cr3+. Phys Scr T 115:191–193. doi:10.1238/Physica.Topical.115a00191

    Article  Google Scholar 

  • Gaudry E, Cabaret D, Sainctavit P, Brouder C, Mauri F, Goulon J, Rogalev A (2005b) Structural relaxations around Ti, Cr and Fe impurities in α-Al2O3 probed by X-ray absorption near-edge structure combined with first-principles calculations. J Phys Condens Matter 17:5467–5480. doi:10.1088/0953-8984/17/36/003

    Article  Google Scholar 

  • Gaudry E, Sainctavit P, Juillot F, Bondioli F, Ohresser P, Letard I (2006) From the green color of eskolaite to the red color of ruby: an X-ray absorption spectroscopy study. Phys Chem Miner 32:710–720. doi:10.1007/s00269-005-0046-x

    Article  Google Scholar 

  • Gibb TC (1992) Determination of coordination numbers and oxidation-states in chromium oxides by extended X-ray absorption fine-structure spectroscopy. J Mater Chem 2:57–64. doi:10.1039/jm9920200057

    Article  Google Scholar 

  • Gibb HJ, Lees PSJ, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126. doi:10.1002/1097-0274(200008)38:2<115::AID-AJIM1>3.0.CO;2-Y

    Article  Google Scholar 

  • Gibbs GV, Breck DW, Meagher EP (1968) Structural refinement of hydrous and anhydrous synthetic beryl, Al2(Be3Si6)O18 and emerald, Al1.9Cr0.1(Be3Si6)O18. Lithos 1:275–285. doi:10.1016/S0024-4937(68)80044-1

    Article  Google Scholar 

  • Ginder-Vogel M, Borch T, Mayes M, Jardine P, Fendorf S (2005a) Chromate reduction and retention processes within Hanford sediments. Environ Sci Technol 39:7833–7839. doi:10.1021/es050535y

    Article  Google Scholar 

  • Ginder-Vogel M, Borch T, Mayes M, Jardine P, Fendorf S (2005b) Chromate reduction and retention processes within Hanford sediments. Environ Sci Technol 39:7833–7839. doi:10.1021/es050535y

    Article  Google Scholar 

  • Glatzel P, Bergmann U, de Groot FMF, Weckhuysen BM, Cramer SP (2005) A study of transition metal K absorption pre-edges by resonant inelastic X-ray scattering (RIXS). Phys Scr T 115:1032–1034. doi:10.1238/Physica.Topical.115a01032

    Article  Google Scholar 

  • Haddi A, Farges F, Trocellier P, Curti E, Harfouche M, Brown GE Jr (2007) On the coordination of actinides and fission products in silicate glasses. AIP Conf Proc 882:256–258. doi:10.1063/1.2644493

    Article  Google Scholar 

  • Haines J, Cambon O, Hull S (2003) Neutron diffraction study of quartz-type FePO4: high-temperature behavior and α-β phase transition. Z Kristallogr 218:193–200. doi:10.1524/zkri.218.3.193.20755

    Article  Google Scholar 

  • Hamilton JW, Wetterhahn KE (1986) Chromium (VI)-induced DNA damage in chick-embryo liver and blood-cells in vivo. Carcinogen 7:2085–2088. doi:10.1093/carcin/7.12.2085

    Article  Google Scholar 

  • Hoppe R, Scheld W (1987) Zur Kenntnis von Na4(CrO4). Z Anorg Allg Chem 546:137–141. doi:10.1002/zaac.19875460313

    Article  Google Scholar 

  • Hu M-J, Wei Y-L, Yang Y-W, Lee J-F (2004) X-ray absorption spectroscopy study of chromium recovered from Cr(VI)-containing water with rice husk. J Phys Condens Matter 16:S3473–S3478. doi:10.1088/0953-8984/16/33/007

    Article  Google Scholar 

  • Huggins FE, Najih M, Huffman GP (1999) Direct speciation of chromium in coal combustion by-products by X-ray absorption fine structure spectroscopy. Fuel 78:233–242. doi:10.1016/S0016-2361(98)00142-2

    Article  Google Scholar 

  • Ilton ES (1999) Chromium. In: Marshall EP, Farirbridge RW (eds) Encyclopedia of geochemistry. Kluwer, Dordrecht, pp 81–82

  • Ilton ES, Veblen DR (1994) Chromium sorption by phlogopite and biotite in acidic solutions at 25°C: insights from X-ray photoelectron spectroscopy and electron microscopy. Geochim Cosmochim Acta 58:2777–2788. doi:10.1016/0016-7037(94)90113-9

    Article  Google Scholar 

  • Irwin RJ (1997) Chromium VI (hexavalent chromium). In: Irwin RJ (ed) Environmental contaminants encyclopedia. National Park Services, Fort Collins, 43 p

  • Ishimata N, Miyata T, Minato J, Marumo F, Iwai S (1980) A structural investigation of α-Al2O3 at 2170 K. Acta Crystallogr B 36:228–230. doi:10.1107/S0567740880002981

    Article  Google Scholar 

  • Jackson WE, Waychunas GA, Brown GE Jr, Mustre de Leon J, Conradson SD, Combes J-M (1990) In situ high temperature X-ray absorption study of ferrous iron in orthosilicates crystals and liquids. In: Hasnain SS (ed) X-ray absorption fine structure. Ellis Horwood, Chichester, pp 298–301

    Google Scholar 

  • Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EA, Brown GE Jr (2005) Spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in anhydrous silicate melts of geochemical interest. Geochim Cosmochim Acta 69:4315–4332. doi:10.1016/j.gca.2005.01.008

    Article  Google Scholar 

  • Jardine PM, Fendorf SE, Mayes MA, Larsen IL, Brooks SC, Bailey WB (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ Sci Technol 33:2939–2944. doi:10.1021/es981211v

    Article  Google Scholar 

  • Jing CY, Liu SQ, Korfiatis GP, Meng XG (2006) Leaching behavior of Cr(III) in stabilized/solidified soil. Chemosph 64:379–385. doi:10.1016/j.chemosphere.2005.12.039

    Article  Google Scholar 

  • Juhin A, Calas G, Cabaret D, Galoisy L, Hazemann JL (2007) Structural relaxation around substitutional Cr3+ in MgAl2O4. Phys Rev B 76:054105. doi:10.1103/PhysRevB.76.054105

  • Juhin A, Brouder C, Arrio MA, Cabaret C, Sainctavit P, Balan E, Bordage A, Seitsonen AP, Calas G, Eeckhout SG, Glatzel P (2008) X-ray linear dichroism in cubic compounds: the case of Cr3+ in MgAl2O4. Phys Rev B 78:195103. doi:10.1103/PhysRevB.78.195103

    Google Scholar 

  • Kent DB, Davis JA, Anderson LCD, Rea BA, Waite TD (1994) Transport of chromium and selenium in the suboxic zone of a shallow aquifer: influence of redox and adsorption reactions. Water Resour Res 30:1099–1114. doi:10.1029/93WR03244

    Article  Google Scholar 

  • Kim-Zajonz J, Werner S, Schulz H (1999) High pressure single crystal X-ray diffraction study on ruby up to 31 GPa. Z Kristallogr 214:331–336

    Google Scholar 

  • Krause MO, Oliver JH (1979) Natural widths of atomic K and L levels, Ka X-ray lines and several KLL Auger lines. J Phys Chem Ref Data 8:329–338

    Article  Google Scholar 

  • Lazar D, Ribar B, Divjakovic V, Meszaros C (1991) Structure of hexaaquachromium(III) nitrate trihydrate. Acta Crystallogr C 47:1060–1062. doi:10.1107/S0108270190012628

    Article  Google Scholar 

  • Lee JF, Bajt S, Clark SB, Lamble GM, Langton CA, Oji L (1995) Chromium speciation in hazardous, cement-based waste forms. Phys B 208–209:577–578. doi:10.1016/0921-4526(94)00758-N

    Article  Google Scholar 

  • Lee DY, Shih YN, Zheng HC, Chen CP, Juang KW, Lee JF, Tsui L (2006) Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant Soil 281:87–96. doi:10.1007/s11104-005-3827-6

    Article  Google Scholar 

  • Lenaz D, Skogby H, Princivalle F, Halenius U (2004) Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Phys Chem Miner 31:633–642. doi:10.1007/s00269-004-0420-0

    Article  Google Scholar 

  • Levina A, Codd R, Dillon CT, Lay PA (2003) Chromium in biology: toxicology and nutritional aspects. Prog Inorg Chem 51:145–250

    Google Scholar 

  • Levy D, Diella V, Pavese A, Dapiaggi M, Sani A (2005) P-V equation of state, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr2O4 spinel). Am Mineral 90:1157–1162. doi:10.2138/am.2005.1755

    Article  Google Scholar 

  • Lewis RJ Sr (ed) (1991) Carcinogenically active chemicals. Van Nostrand Reinhold, New York, 1088 p

  • Logar NZ, Siljeg M, Arcon I, Meden A, Tusar NN, Stefanovic SC, Kovac J, Kaucic V (2006) Sorption of Cr3+ on clinoptilolite tuff: a structural investigation. Microp Mesop Mater 93:275–284. doi:10.1016/j.micromeso.2006.02.026

    Article  Google Scholar 

  • Lopez-Navarrete E, Caballero A, Orera VM, Lazaro FJ, Ocana M (2003) Oxidation state and localization of chromium ions in Cr-doped cassiterite and Cr-doped malayaite. Acta Mater 51:2371–2381. doi:10.1016/S1359-6454(03)00044-2

    Article  Google Scholar 

  • Lumetta GJ, Rapko BM (1999) Removal of chromium from Hanford tank sludges. Separ Sci Technol 34:1495–1506

    Google Scholar 

  • Maass K, Glaum R, Gruehn R (2002) Beitraege zum thermischen Verhalten und zur Kristallchemie von Wasserfreien Phosphaten XXXII. Neue Orthophosphate des zweiwertigen Chroms. Z Anorg Allg Chem 628:1663–1672. doi:10.1002/1521-3749(200207)628:7<1663::AID-ZAAC1663>3.0.CO;2-Y (in German)

    Article  Google Scholar 

  • Martin-Ramos JD, Rodriguez-Gallego M (1982) Chromium mica from Sierra Nevada, Spain. Mineral Mag 46:269–272. doi:10.1180/minmag.1982.046.339.16

    Article  Google Scholar 

  • McGinnety JA (1972) Redetermination of the structures of potassium sulphate and potassium chromate: the effect of electrostatic crystal forces upon observed bond lengths. Acta Crystallogr B 28:2845–2852. doi:10.1107/S0567740872007022

    Article  Google Scholar 

  • Meegoda JN, Kamolpornwijit W, Charleston G (2000) Construction use of vitrified chromium-contaminated soils. Pract Periodic Hazard Toxicol Rad Waste Manage 4:89–98. doi:10.1061/(ASCE)1090-025X(2000)4:3(89)

    Article  Google Scholar 

  • Miletich R, Nowak M, Seifert F, Angel RJ, Brandstaetter G (1999) High-pressure crystal chemistry of chromous orthosilicate, Cr2SiO4. A single-crystal X-ray diffraction and electronic absorption spectroscopy study. Phys Chem Miner 26:446–459. doi:10.1007/s002690050207

    Article  Google Scholar 

  • Najih M, Huggins FE, Huffman GP (1995) Determination of chromium oxidation states in coal combustion products by XAFS spectroscopy. Fuel Energy Abstr 37:150

    Google Scholar 

  • Nassau K (1983) The physics and chemistry of colour. Sons, New York

  • Nimmo JK (1981) Sodium chromate(VI) at 296 K (neutron). Acta Crystallogr 37:431–433

    Google Scholar 

  • Nriagu JO, Niebor E (1988) Chromium in the natural and human environments. Wiley, New York, 462 p

  • Nyburg SC, Steed J, Aleksovska S, Petrusevski VM (2000) Structure of the alums. I. On the sulfate group disorder in the alpha-alums. Acta Crystallogr B 56:204–209. doi:10.1107/S0108768199014846

    Article  Google Scholar 

  • O’Day PA, Carroll SA, Waychunas GA, Phillips B (1995) XAS of trace-element coordination in natural sediments at ambient and cryogenic temperatures. Phys B 209:309–310. doi:10.1016/0921-4526(94)00683-M

    Article  Google Scholar 

  • Pantelouris A, Modrow H, Pantelouris M, Hormes J (2004) The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chem Phys 300:13–22. doi:10.1016/j.chemphys.2003.12.017

    Article  Google Scholar 

  • Parikh P, Bhardwaj DM, Gupta RP, Saini NL, Fernandes S, Singhal BK, Jain DC, Garg KB (2002) Comparative study of the electronic structure of natural and synthetic rubies using XAFS and EDAX analyses. Bull Mater Sci 25:653–656. doi:10.1007/BF02707899

    Article  Google Scholar 

  • Parikh P, Saini NL, Dalela S, Bhardwaj DM, Fernandes S, Gupta RP, Garg KB (2003) Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds. Nucl Instr Meths Phys Res B 199:489–493. doi:10.1016/S0168-583X(02)01426-X

    Article  Google Scholar 

  • Parsons JG, Hejazi M, Tiemann KJ, Henning J, Gardea-Torresdey JL (2002) An XAS study of the binding of copper(II), zinc(II), chromium(III), and chromium(VI) to hops biomass. Microchem J 71:211–219. doi:10.1016/S0026-265X(02)00013-9

    Article  Google Scholar 

  • Patterson RR, Fendorf SE, Fendorf MJ (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31:2039–2044. doi:10.1021/es960836v

    Article  Google Scholar 

  • Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51:1010–1026. doi:10.1021/ja01379a006

    Article  Google Scholar 

  • Peterson ML, Brown GE Jr, Parks GA (1996) Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface. Coll Surf A 107:77–88. doi:10.1016/0927-7757(95)03345-9

    Article  Google Scholar 

  • Peterson ML, Brown GE Jr, Parks GA, Stein CL (1997) Differential redox and sorption of Cr(III/VI) on natural silicate and oxide minerals: EXAFS and XANES result. Geochim Cosmochim Acta 61:3399–3412. doi:10.1016/S0016-7037(97)00165-8

    Article  Google Scholar 

  • Phillips TL, Loveless JK, Bailey SW (1980) Cr3+-coordination in chlorites: a structural study of ten chromian chlorites. Am Mineral 65:112–122

    Google Scholar 

  • Princivalle F, Martignago F, dal Negro A (2006) Kinetics of cation ordering in natural Mg (Al, Cr(3+))2O4 spinels. Am Mineral 91:313–318. doi:10.2138/am.2006.1894

    Article  Google Scholar 

  • Rasheed F, O’Donnell KP, Henderson B, Hollis DB (1991) Disorder and the optical spectroscopy of Cr3+-doped glasses. I. Silicate glasses. J Phys 3:1915–1930

    Google Scholar 

  • Ruben H, Olovsson I, Zalkin A, Templeton DH (1973) Sodium chromate tetrahydrate. Acta Crystallogr B 29:2963–2964. doi:10.1107/S0567740873007831

    Article  Google Scholar 

  • Shaffer RE, Cross JO, Rose-Pehrsson SL, Elam WT (2001) Speciation of chromium in simulated soil samples using X-ray absorption spectroscopy and multivariate calibration. Anal Chim Acta 442:295–304. doi:10.1016/S0003-2670(01)01004-2

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925–945. doi:10.1107/S0567740869003220

    Article  Google Scholar 

  • Shiraki K (1978) Chromium-behaviour during weathering and alteration of rocks. In: Wedepohl KH (ed) Handbook of geochemistry. 24-G-1, Springer, Berlin

    Google Scholar 

  • Stephens JS, Cruickshank DWJ (1970) The crystal structure of (CrO3)n. Acta Crystallogr B 26:222–226. doi:10.1107/S0567740870002182

    Article  Google Scholar 

  • Sutton SR, Jones KW, Gordon B, Rivers ML, Smith JV (1993) Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochim Cosmochim Acta 57:461–468. doi:10.1016/0016-7037(93)90444-2

    Article  Google Scholar 

  • Szulczewski M, Helme K, Bleam WF (1997) Comparizon of XANES analyses and extractions to determine chromium speciation in contaminated soils. Environ Sci Technol 31:2954–2959. doi:10.1021/es9701772

    Article  Google Scholar 

  • Tai HS, Jou CJ (1999) Immobilization of chromium-contaminated soil by means of microwave energy. J Hazard Mater 65:267–275. doi:10.1016/S0304-3894(98)00274-X

    Article  Google Scholar 

  • Tokunaga TK, Wan J, Hazen TC, Schwartz E, Firestone MK, Sutton SR, Newville M, Olson KR, Lanzirotti A, Rao W (2003) Distribution of chromium contamination and microbial activity in soil aggregates. J Environ Qual 32:541–549

    Google Scholar 

  • Trocellier P, Djanarthany S, Chene J, Haddi A, Brass AM, Poissonnet S, Farges F (2005) Chemical durability of alkali-boro silicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS. Nucl Instr Meth Phys Res B 240:337–344

    Article  Google Scholar 

  • Tromp M, Moulin J, Reid G, Evans J (2007) Cr K-Edge XANES spectroscopy: ligand and oxidation state dependence—what is oxidation state? AIP Conf Proc 882:699–701. doi:10.1063/1.2644637

    Article  Google Scholar 

  • Weakley TJR, Ylvisaker ER, Yager RJ, Stephens JE, Wiegel RD, Mengis M, Wu P, Photinos P, Abrahams SC (2004) Phase transitions in K2Cr3O7 and structural redetermination of phase II. Acta Crystallogr B 60:705–715. doi:10.1107/S010876810402333X

    Article  Google Scholar 

  • Westre TE, Kennepohl P, de Witt J, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J Am Chem Soc 119:6297–6314. doi:10.1021/ja964352a

    Article  Google Scholar 

  • Wildner M, Andrut M (2001) The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures. Am Mineral 86:1231–1251

    Google Scholar 

  • Wilhelmi KA (1967) The crystal structure of strontium chromate(IV), Sr2 CrO4. Ark Kemi 26:157–165

    Google Scholar 

  • Wilke M, Farges F, Petit PE, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K XANES spectroscopic study. Am Mineral 65:713–730

    Google Scholar 

  • Winter JK, Ghose S (1979) Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs. Am Mineral 64:573–586

    Google Scholar 

  • Winterer M (1997) XAFS—a data analysis program for materials science. J Phys IV Fr 7:C2–C243

    Google Scholar 

  • Zachara JM, Ainsworth CC, Brown GE Jr, Catalano JG, McKinley JP, Qafoku O, Smith SC, Szecsody JE, Traina SJ, Warner JA (2004) Chromium speciation and mobility in a high level nuclear waste vadose zone plume. Geochim Cosmochim Acta 68:13–30. doi:10.1016/S0016-7037(03)00417-4

    Article  Google Scholar 

  • Zayed A, Lytle CM, Qian J-H, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299. doi:10.1007/s004250050403

    Article  Google Scholar 

Download references

Acknowledgments

The beamline scientists at SSRL (esp. Joe Wong) and SLS (Anne-Marie Flank and Messaoud Harfouche) are greatly thanked, particularly for their help in data collection. Anonymous reviewers and associate editor Catherine McCammon made useful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Farges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farges, F. Chromium speciation in oxide-type compounds: application to minerals, gems, aqueous solutions and silicate glasses. Phys Chem Minerals 36, 463–481 (2009). https://doi.org/10.1007/s00269-009-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0293-3

Keywords

Navigation