Skip to main content

Advertisement

Log in

High-pressure phase transitions of CaRhO3 perovskite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Hirose K, Fujita Y (2005) Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys Res Lett 32:L13313

    Article  Google Scholar 

  • Inaguma Y, Hasumi K, Yoshida M, Ohba T, Katsumata T (2008) High-pressure synthesis, structure, and characterization of a post-perovskite CaPtO3 with CaIrO3-type structure. Inorg Chem 47:1868–1870

    Article  Google Scholar 

  • Izumi F, Ikeda T (2000) A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater Sci Forum 321–324:198–203

    Article  Google Scholar 

  • Kojitani H, Furukawa A, Akaogi M (2007a) Thermochemistry and high-pressure equilibria of the post-perovskite phase transition in CaIrO3. Am Miner 92:229–232. doi:10.2138/am.2007.2358

    Article  Google Scholar 

  • Kojitani H, Shirako Y, Akaogi M (2007b) Post-perovskite phase transition in CaRuO3. Phys Earth Planet Int 165:127–134. doi:10.1016/j.pepi.2007.09.003

    Article  Google Scholar 

  • Lufaso MW, Woodward PM (2004) Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Crystallogr B 60:10–20. doi:10.1107/S0108768103026661

    Article  Google Scholar 

  • Marezio M, Remeika JP, Dernier PD (1970) The crystal chemistry of the rare earth orthoferrites. Acta Crystallogr B 26:2008–2022. doi:10.1107/S0567740870005319

    Article  Google Scholar 

  • McDaniel CL, Schneider SJ (1972) Phase relations in the CaO–IrO2–Ir system in air. J Solid State Chem 4:275–280. doi:10.1016/0022-4596(72)90117-X

    Article  Google Scholar 

  • Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858. doi:10.1126/science.1095932

    Article  Google Scholar 

  • Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth’s D″ layer. Nature 430:445–448. doi:10.1038/nature02701

    Article  Google Scholar 

  • Oganov AR, Martonˇa’k R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of earth’s D″ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438:1142–1144. doi:10.1038/nature04439

    Article  Google Scholar 

  • Ohgushi K, Gotou H, Yagi T, Kiuchi Y, Sakai F, Ueda Y (2006) Metal-insulator transition in Ca1−x Na x IrO3 with post-perovskite structure. Phys Rev B 74:241104. doi:10.1103/PhysRevB.74.241104

    Article  Google Scholar 

  • Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Gotou H, Ueda Y, Yagi T (2008) CaPtO3 as a novel post-perovskite oxide. Phys Chem Miner 35:189–195. doi:10.1007/s00269-007-0211-5

    Article  Google Scholar 

  • Rodi VF, Babel D (1965) Erdalkaliiridium(IV)-oxide: kristallstruktur von CaIrO3. Z Anorg Allg Chem 336:17–23. doi:10.1002/zaac.19653360104

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sect B25:925–946

    Article  Google Scholar 

  • Stølen S, Trønnes RG (2007) The perovskite to post-perovskite transition in CaIrO3: Clapeyron slope and changes in bulk and shear moduli by density functional theory. Phys Earth Planet Int 164:50–62. doi:10.1016/j.pepi.2007.05.009

    Article  Google Scholar 

  • Tschauner O, Kiefer B, Liu H, Sinogeikin S, Somayazulu M, Luo SN (2008) Possible structural polymorphism in Al-bearing magnesiumsilicate post-perovskite. Am Miner 93:533–539. doi:10.2138/am.2008.2372

    Article  Google Scholar 

  • Yamaura K, Takayama-Muromachi E (2006) High-pressure synthesis of the perovskite rhodate CaRhO3. Physica C 445–448:54–56. doi:10.1016/j.physc.2006.03.076

    Article  Google Scholar 

  • Yamaura K, Shirako Y, Kojitani H, Arai M, Young DP, Akaogi M, Nakashima M, Katsumata T, Inaguma Y, Takayama-Muromachi E (2009) Synthesis and magnetic and charge transport properties of the correlated 4d post-perovskite CaRhO3. J Am Chem Soc (in press)

  • Zayak AT, Huang X, Neaton JB, Rabe KM (2006) Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain. Phys Rev B 74:094104. doi:10.1103/PhysRevB.74.094104

    Article  Google Scholar 

  • Zhao J, Ross NL, Angel RJ (2004) Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Phys Chem Miner 31:299–305. doi:10.1007/s00269-004-0391-1

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Y. Inaguma and T. Katsumata for useful suggestions for the experiments and Y. Miura for valuable discussion. Constructive comments by two anonymous reviewers were useful to improve the manuscript. This work was supported in part by the Grants-in-aid for Scientific Research from JSPS (19340166 to M.A., and 18655080 and 20360012 to K.Y.), and also by the Superconducting Materials Research Project from MEXT, Japan, the Murata Science Foundation, Kyoto, Japan, and the Futaba Memorial Foundation, Mobara, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirako, Y., Kojitani, H., Akaogi, M. et al. High-pressure phase transitions of CaRhO3 perovskite. Phys Chem Minerals 36, 455–462 (2009). https://doi.org/10.1007/s00269-009-0292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0292-4

Keywords

Navigation