Skip to main content
Log in

Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Thermal behaviour and kinetics of dehydration of gypsum in air have been investigated using in situ real-time laboratory parallel-beam X-ray powder diffraction data evaluated by the Rietveld method. Thermal expansion has been analysed from 298 to 373 K. The high-temperature limits for the cell edges and for the cell volume, calculated using the Einstein equation, are 4.29 × 10−6, 4.94 × 10−5, 2.97 × 10−5, and 8.21 × 10−5. Thermal expansion of gypsum is strongly anisotropic being larger along the b axis mainly due to the weakening of \( {\text{H}}{2} \cdots {\text{O}}{1} \) hydrogen bond. Dehydration of gypsum has been investigated in isothermal conditions within the 348–403 K range with a temperature increase of 5 K. Dehydration proceeds through the CaSO4·2H2O → CaSO4·0.5H2O → γ-CaSO4 steps. Experimental data have been fitted with the Avrami equation to calculate the empirical activation energy of the process. No change in transformation mechanism has been observed within the analysed temperature range and the corresponding E a is 109(12) kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abriel W (1983) Calcium sulfate subhydrate CaSO4·0, 8H2O. Acta Crystallogr C 39:956–958. doi:10.1107/S0108270183006988

    Article  Google Scholar 

  • Abriel W, Reisdorf K, Pannetier J (1990) Dehydration reactions of gypsum: a neutron and X-ray study. J Solid State Chem 85:23–30. doi:10.1016/S0022-4596(05)80055-6

    Article  Google Scholar 

  • Atoji M, Rundle R (1958) Neutron diffraction study of gypsum, CaSO4·2H2O. J Chem Phys 29:1306–1311. doi:10.1063/1.1744713

    Article  Google Scholar 

  • Avrami M (1939) Kinetics of phase change I. General theory. J Chem Phys 7:103–112. doi:10.1063/1.1750380

    Article  Google Scholar 

  • Avrami M (1940) Kinetics of phase change II. Transformation–time relations for random distribution of nuclei. J Chem Phys 8:212–224. doi:10.1063/1.1750631

    Article  Google Scholar 

  • Avrami M (1941) Kinetics of phase change III. Granulation, phase change and microstructure. J Chem Phys 9:117–184. doi:10.1063/1.1750872

    Article  Google Scholar 

  • Badens E, Llewellyn P, Jourdan C, Veesler S, Boistelle R, Rouquerol F (1998) Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J Solid State Chem 139:37–44. doi:10.1006/jssc.1998.7797

    Article  Google Scholar 

  • Balić-Žunic T, Vickovic I (1996) IVTON—program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. J Appl Cryst 29:305–306. doi:10.1107/S0021889895015081

    Article  Google Scholar 

  • Ball MC, Norwood LS (1969) Studies in the calcium sulphate-water. Part I. Kinetics of dehydration of calcium sulphate dihydrate. J Chem Soc A 1969:1633–1637. doi:10.1039/j19690001633

    Article  Google Scholar 

  • Ballirano P, Melis E (2007) Thermal behaviour of β-anhydrite CaSO4 to 1, 263 K. Phys Chem Miner 12:289–295

    Google Scholar 

  • Ballirano P, Maras A, Meloni S, Caminiti R (2001) The monoclinic I2 structure of Bassanite, calcium sulphate hemihydrate (CaSO4·1/2 H2O). Eur J Mineral 13:985–993. doi:10.1127/0935-1221/2001/0013/0985

    Article  Google Scholar 

  • Bezou C, Nonat A, Mutin J-C, Christensen AN, Lehmann MS (1995) Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5 H2O, and CaSO4·0.6 H2O by powder diffraction methods. J Solid State Chem 117:165–176. doi:10.1006/jssc.1995.1260

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B 47:192–197. doi:10.1107/S0108768190011041

    Article  Google Scholar 

  • Brown WE, Dollimore D, Galwey AK (1980) Reactions in the solid state. In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics, vol 22. Elsevier, Amsterdam, pp 41–113

    Google Scholar 

  • Bruker AXS (2005) Topas V3: General profile and structure analysis software for powder diffraction data. Bruker AXS, Karlsruhe

    Google Scholar 

  • Bushuev NN, Maslennikov BM, Borisov VM (1983) Phase transformations in the dehydration of CaSO4 • 2 H2O. Russ J Inorg Chem 28:1404–1407

    Google Scholar 

  • Carbone M, Ballirano P, Caminiti R (2008) A kinetic investigation of gypsum dehydration at reduced pressure by energy dispersive X-ray diffraction (EDXD). Eur J Mineral 20:621–627. doi:10.1127/0935-1221/2008/0020-1826

    Article  Google Scholar 

  • Chang H, Huang PJ, Hou S (1999) Application of thermo-Raman spectroscopy to study the dehydration of CaSO4·2H2O and CaSO4·1/2H2O. Mater Chem Phys 58:12–19. doi:10.1016/S0254-0584(98)00239-9

    Article  Google Scholar 

  • Cheary RW, Coelho AA (1992) A fundamentals parameters convolution based approach to synthesizing line profiles. J Appl Cryst 25:109–120. doi:10.1107/S0021889891010804

    Article  Google Scholar 

  • Chio CH, Sharma SK, Munenow DW (2004) Micro-Raman studies of gypsum in the temperature range between 9 K and 373 K. Am Mineral 89:390–395

    Google Scholar 

  • Christensen N, Lehmann MS, Pannetier J (1985) A time-resolved neutron powder diffraction investigation of the hydration of CaSO4·1/2 D2O and of the dehydration of CaSO4·2 D2O. J Appl Cryst 18:170–172. doi:10.1107/S0021889885010056

    Article  Google Scholar 

  • Cole E, Lancucki C (1974) A refinement of the crystal structure of gypsum CaSO4·2H2O. Acta Crystallogr B 30:921–926. doi:10.1107/S0567740874004055

    Article  Google Scholar 

  • Dos Santos VA, Pereira JAFR, Dantas CC (1997) Kinetics of thermal dehydration of gypsum ore for obtaining beta hemihydrate in a fluidized bed. Bull Soc Chim Belg 6:253–260

    Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants, vol 2. American Geophysical Union, Washington, pp 29–44

    Google Scholar 

  • Finger LW, Cox DE, Jephcoat AP (1994) A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Cryst 27:892–900. doi:10.1107/S0021889894004218

    Article  Google Scholar 

  • Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh Chem 134:693–719. doi:10.1007/s00706-003-0590-3

    Google Scholar 

  • Gualtieri AF (2001) Synthesis of sodium zeolites from a natural halloysite. Phys Chem Miner 28:719–728. doi:10.1007/s002690100197

    Article  Google Scholar 

  • Hulbert SF (1969) Models for solid state decompositions in powdered compacts. J Br Ceram Soc 6:11–20

    Google Scholar 

  • Jordan G, Astilleros JM (2006) In situ HAFM study of thermal dehydration on gypsum (010) surfaces. Am Mineral 91:619–627. doi:10.2138/am.2006.1890

    Article  Google Scholar 

  • Knight KS, Stretton IC, Schofield PF (1999) Temperature evolution between 50 K and 320 K of the thermal expansion of gypsum derived from neutron powder diffraction data. Phys Chem Miner 26:477–483. doi:10.1007/s002690050210

    Article  Google Scholar 

  • Kuzel HJ, Hauner M (1987) Chemische und kristallograpische Eigenschaften von Calciumsulfat_Halbhydrat und Anhydrit III. Zement-Kalk-Gips 40:628–632

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) GSAS—general structure analysis system. Los Alamos Nationa Laboratory Report No. LAUR 86–748. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • McAdie HG (1964) The effect of water vapor upon the dehydration of CaSO4·2H2O. Can J Chem 42:792–801. doi:10.1139/v64-118

    Article  Google Scholar 

  • Molony B, Ridge M (1968) Kinetics of the dehydration of calcium sulphate dehydrate in vacuo. Aust J Chem 21:1063–1065

    Google Scholar 

  • Pedersen B, Semmingsen D (1982) Neutron diffraction refinement of the structure of gypsum CaSO4·2H2O. Acta Crystallogr B 38:1074–1077. doi:10.1107/S0567740882004993

    Article  Google Scholar 

  • Prasad P, Krishna C, Prasad KS, Narayana RD (2005) Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: in situ FTIR study. Am Mineral 90:672–678. doi:10.2138/am.2005.1742

    Article  Google Scholar 

  • Putnis A, Winkler B, Diaz LF (1990) In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum. Mineral Mag 54:123–128. doi:10.1180/minmag.1990.054.374.14

    Article  Google Scholar 

  • Sarma LP, Prasad PSR, Ravikumar N (1998) Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc 29:851–856. doi :10.1002/(SICI)1097-4555(199809)29:9<851::AID-JRS313>3.0.CO;2-S

    Article  Google Scholar 

  • Schofield PF, Knight KS, Stretton IC (1996) Thermal expansion of gypsum investigated by neutron powder diffraction. Am Mineral 81:847–851

    Google Scholar 

  • Schofield PF, Stretton IC, Knight KS, Hull S (1997) Powder neutron diffraction studies of the thermal expansion, compressibility and dehydration of deuterated gypsum. Physica B 234–236:942–944. doi:10.1016/S0921-4526(96)01219-7

    Article  Google Scholar 

  • Schofield PF, Wilson CC, Knight KS, Stretton IC (2000) Temperature related structural variation of the hydrous components in gypsum. Z Kristallogr 215:707–710. doi:10.1524/zkri.2000.215.12.707

    Article  Google Scholar 

  • Strydom CA, Hudson-Lamb DL, Potgieter JH, Dagg E (1995) The thermal dehydration of synthetic gypsum. Therm Acta 269–270:631–638. doi:10.1016/0040-6031(95)02521-9

    Article  Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchroton X-ray data from Al2O3. J Appl Cryst 20:79–83. doi:10.1107/S0021889887087090

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213. doi:10.1107/S0021889801002242

    Article  Google Scholar 

  • Von Dreele RB (1997) Quantitative texture analysis by Rietveld refinement. J Appl Cryst 30:517–525. doi:10.1107/S0021889897005918

    Article  Google Scholar 

  • Young RA (1993) Introduction to the Rietveld method: In: Young RA (ed) The Rietveld method. Oxford University Press, Oxford, pp 1–38

Download references

Acknowledgment

This work received financial support by Università di Roma “La Sapienza”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ballirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballirano, P., Melis, E. Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys Chem Minerals 36, 391–402 (2009). https://doi.org/10.1007/s00269-008-0285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0285-8

Keywords

Navigation