Skip to main content
Log in

Maximum entropy method: an unconventional approach to explore observables related to the electron density in phengites

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The maximum entropy method (MEM) is used here to get an insight into the electron density [ρ(r)] of phengites 2M 1 and 3T, paying special attention to the M1-formally empty site and charge distribution. Room temperature single crystal X-ray diffraction data have been used as experimental input for MEM. The results obtained by MEM have been compared with those from conventional structure refinement which, in turn, has provided the prior-electron density to start the entropy maximization process. MEM reveals a comparatively non-committal approach, able to produce information related to the M1-site fractional occupancy, and yields results consistent with those from the difference Fourier synthesis, but free of the uncertainties due to the abrupt truncation of the series. The charge distribution is investigated by means of the notion of ‘‘site basin’’, i.e., those site-centered volumes delimited by a surface such as ∇ρ·= 0. In particular, we observe: (1) the overall partitioning of the basin total charge between cation and anion sites, and the interlayer site charge seems to depend on sample composition, and (2) the apical-oxygen plane total basin charge and hydroxyl basin charge are presumably related to the polytype. The MEM-determined electron density does not allow full exploration of the critical points for very complex structures as micas, insofar as conventional room temperature experimental diffraction data are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford Science Publications, Oxford

    Google Scholar 

  • Buck B, Macaulay VA (1990) Maximum entropy in action. In: Buck B, Macaulay VA (eds) Claredon Press, Oxford

  • Coggon R, Holland TJB (2002) Mixing properties of phengite mica and revised garnet-phengite thermobarometer. J Metamorph Geol 20:683–696. doi:10.1046/j.1525-1314.2002.00395.x

    Article  Google Scholar 

  • Collins D (1983) Electron density images from imperfect data by iterative entropy maximization. Nature 298:49–51. doi:10.1038/298049a0

    Article  Google Scholar 

  • Collins D, Mahar MC (1983) Electron density: an exponential model. Acta Crystallogr A 39:252–256. doi:10.1107/S0108767383000537

    Article  Google Scholar 

  • Compagnoni R (1977) The Sesia-Lanzo zone: high pressure low-temperature metamorphism in the Austroalpine continental margin. Rend Soc Ital Mineral Petrol 23:335–374

    Google Scholar 

  • Curetti N (2004) Miche diottaedriche di alta pressione: caratterizzazione cristallochimica e strutturale. Doctorate Thesis, University of Turin, Turin, Italy

  • Curetti N, Levy D, Pavese A, Ivaldi G (2006) Elastic properties and stability of coexisting 3T and 2M1 phengite polytypes. Phys Chem Miner 32:670–678. doi:10.1007/s00269-005-0044-z

    Article  Google Scholar 

  • Dobrzynski L, Waliszewski J (2003) Error maps in charge and momentum density studies by the maximum entropy methods. J Phys Soc Jpn 72:2203–2212. doi:10.1143/JPSJ.72.2203

    Article  Google Scholar 

  • Ferraris G, Ivaldi G (2002) Micas: crystal chemistry and metamorphic petrology. Rev Mineral Geochem 46:117–153

    Article  Google Scholar 

  • Ferraris G, Ivaldi G, Nespolo M, Takeda H (1995) On the stability of dioctahedral micas. EUG-8 Abstr suppl No 1 to Terra Nova, vol 7, p 289

  • Giese RF (1979) Hydroxyl orientation in 2:1 phyllosilicates. Clays Clay Miner 35:170–171

    Google Scholar 

  • Guggenheim S, Chang YH, Koster van Groos AF (1987) Muscovite dehydroxylation: high-temperature studies. Am Mineral 72:537–550

    Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–867. doi:10.1103/PhysRev.136.B864

    Article  Google Scholar 

  • Ivaldi G, Ferraris G, Curetti N (2001a) Crystal structure paths to a phengite barometers? XI International Meeting EUG, Strasburg, 540

  • Ivaldi G, Ferraris G, Curetti N, Compagnoni R (2001b) Coexisting 3T and 2M1 polytypes of phengite from Cima Pal (Val Savenca, western Alps): Chemical and polytypic zoning and structural characterization. Eur J Mineral 13:1025–1034. doi:10.1127/0935-1221/2001/0013-1025

    Article  Google Scholar 

  • Iversen BB, Jensen JL, Danielsen J (1997) Errors in Maximum-entropy charge density distributions obtained from diffraction data. Acta Crystallogr A 53:376–387. doi:10.1107/S0108767397000792

    Article  Google Scholar 

  • Kumazawa S, Kubota Y, Takata M, Sakata M (1993) MEED: a program package for electron-density-distribution calculation by the maximum entropy method. J Appl Cryst 26:453–457. doi:10.1107/S0021889892012883

    Article  Google Scholar 

  • Martignago F, Andreozzi GB, Dal Negro A (2006) Thermodynamic and kinetics of cation ordering in natural and synthetic Mg(Al, Fe)2O4 spinels from in-situ high-temperature X-ray diffraction. Am Mineral 91:306–312. doi:10.2138/am.2006.1880

    Article  Google Scholar 

  • Massonne HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contrib Mineral Petrol 96:212–224. doi:10.1007/BF00375235

    Article  Google Scholar 

  • Massonne HJ, Schreyer W (1989) Stability field of the high pressure assemblage talc+phengite and two new phengite barometers. Eur J Miner 1:391–410

    Google Scholar 

  • Merli M (2005) Outlier recognition in the crystal structure least-squares modelling by diagnostic techniques based on leverage analysis. Acta Crystallogr A 61:471–477. doi:10.1107/S010876730501809X

    Article  Google Scholar 

  • Merli M, Pavese A (2006) About the reliability of the maximum entropy method in reconstructing electron density: the case of MgO. Z Kristallographie 221:613–620

    Article  Google Scholar 

  • Merli M, Pavese A, Ranzini M (2002) Study of the electron density in MgO, (Mg, Fe)O and Cu2O by maximum entropy method and multipole refinements: comparison between methods. Phys Chem Miner 29:455–464. doi:10.1007/s00269-002-0253-7

    Article  Google Scholar 

  • Mookherjee M, Refern SAT, Zhang M (2001) Thermal response of structure and hydroxyl ion of phengite-2M1: an in situ neutron diffraction and FTIR study. Eur J Mineral 13:545–555. doi:10.1127/0935-1221/2001/0013-0545

    Article  Google Scholar 

  • Mottana A, Sassi FP, Thompson JB, Guggenheim S (eds) (2002). Micas: crystal chemistry and metamorphic petrology. In: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, p 499

  • Nespolo M, Ferraris G, Ohashi H (1999) Charge distribution as a tool to investigate structural details: meaning and application to pyroxenes. Acta Crystallogr B 55:902–916. doi:10.1107/S0108768199008708

    Article  Google Scholar 

  • Nespolo M, Ferraris G, Ivaldi G, Hoppe R (2001) Charge distribution as a tool to investigate structural details. II. Extension to hydrogen bonds, distorted and hetero-ligand polyhedra. Acta Crystallogr B 57:652–664. doi:10.1107/S0108768101009879

    Article  Google Scholar 

  • Palatinus L, van Smaalen S (2002) The generalized F constraint in the maximum-entropy method—a study on simulated data. Acta Crystallogr A 58:559–567. doi:10.1107/S0108767302015556

    Article  Google Scholar 

  • Palatinus L, van Smaalen S (2004) Incommensurate modulations made visible by the maximum entropy method in superspace. Z Kristallographie 219:719–729

    Article  Google Scholar 

  • Papoular RJ, Collin G, Colson D, Viallet V (2002) Direct imaging of fractional oxygen O in Hg-based high-Tc superconductors. In: Fry RL (ed) CP617, Bayesian inference and maximum entropy methods in science and engineering: 21st InternationalWorkshop. American Institute of Physics, NY, USA, pp 204–226

  • Pavese A, Ferraris G, Prencipe M, Ibberson R (1997) Cation site ordering in phengite 3T from the Dora-Maira massif (western Alps): a variable-temperature neutron powder diffraction study. Eur J Mineral 9:1183–1190

    Google Scholar 

  • Pavese A, Ferraris G, Pischedda V, Ibberson R (1999a) Tetrahedral order in phengite 2M1 upon heating from powder neutron diffraction, and thermodynamic consequences. Eur J Mineral 11:309–320

    Google Scholar 

  • Pavese A, Ferraris G, Pischedda V, Mezouar M (1999b) Synchrotron powder diffraction study of phengite 3T from the Dora-Maira massif: P–V-T equation of state and petrological consequences. Phys Chem Miner 26:460–467. doi:10.1007/s002690050208

    Article  Google Scholar 

  • Pavese A, Ferraris G, Pischedda V, Radaelli P (2000) Further study of the cation ordering in phengite 3T by neutron powder diffraction. Min Mag (Lond) 64:11–18. doi:10.1180/002646100549085

    Article  Google Scholar 

  • Pavese A, Ferraris G, Pischedda V, Fauth F (2001) M1-site occupancy in 3T and 2M1 phengites by low temperature neutron powder diffraction: reality or artefact? Eur J Mineral 13:1071–1078. doi:10.1127/0935-1221/2001/0013-1071

    Article  Google Scholar 

  • Pavese A, Curetti N, Ferraris G, Ivaldi G, Russo U, Ibberson R (2003) Deprotonation and order-disorder reactions as a function of temperature in a phengite 3T (Cima Pal, western Alps) by neutron diffraction and Mössbauer spectroscopy. Eur J Mineral 15:357–363. doi:10.1127/0935-1221/2003/0015-0357

    Article  Google Scholar 

  • Petricek V, Dusek M, Palatinus L (2000) Jana2000, the crystallographic computing system. Institute of Physics, Praha, Czech Republic

    Google Scholar 

  • Rothbauer R (1971) Untersuchung eines 2M1 Muskovits mit Neutronenstrahlen. Neues Jahrb für Miner Monat, pp 143–154

  • Roversi P, Irwin JJ, Bricogne G (1998) Accurate charge density studies as an extension of Bayesian crystal structure determination. Acta Crystallogr A 54:971–996. doi:10.1107/S010876739800539X

    Article  Google Scholar 

  • Sakata M, Sato M (1990) Accurate structure analysis by the maximum entropy method. Acta Crystallogr A 46:263–270. doi:10.1107/S0108767389012377

    Article  Google Scholar 

  • Sakata M, Mori R, Kumazawza S, Takata M, Toraya H (1990) Electron density distribution from X-ray powder data by use of profile fits and maximum entropy method. J Appl Crystallogr A 23:526–534. doi:10.1107/S0021889890008214

    Article  Google Scholar 

  • Sassi FP, Guidotti CV, Rieder M, De Pieri R (1994) On the occurence of metamorphic 2M1 pengites: some thoughts on polytypism and crystallization condition of 3T phengites. Eur J Mineral 6:151–160

    Google Scholar 

  • van Smaalen S, Palatinus L, Schneider M (2003) The maximum entropy method in superspace. Acta Crystallogr A 59:459–469. doi:10.1107/S010876730301434X

    Article  Google Scholar 

  • Smyth JR, Jacobsen SD, Swope RJ, Angel RJ, Arlt T, Domanik K et al (2000a) Crystal structures and compressibilities of synthetic 2M1 and 3T phengite micas. Eur J Mineral 12:955–963

    Google Scholar 

  • Smyth JR, Jacobsen SD, Hazen RM (2000b) Comparative crystal chemistry of orthosilicate minerals. Rev Mineral Geochem 41:187–209

    Google Scholar 

  • Toshihiro K, Banfield JF (2000) New insights into the mechanism of chloritization of biotite using polytype analysis. Am Mineral 85:1202–1208

    Google Scholar 

  • Toshihiro K, Nespolo M (2001) Atomic structures of planar defects in oxybiotite. Am Mineral 86:336–340

    Google Scholar 

  • Vieillard P (1995) How do uncertainties of the structure refinements influence the accuracy of the prediction of enthalpy of formation? Examples on muscovite and natrolite. Phys Chem Miner 22:428–436. doi:10.1007/BF00200320

    Article  Google Scholar 

Download references

Acknowledgments

Italian Ministry for University and Research (M.U.R.S.T) and Italian National Research Council (C.N.R) are kindly acknowledged for contributing fund to the present study. The authors are indebted to R Papoular for remarks and suggestions which really enhanced the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pavese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merli, M., Pavese, A. & Curetti, N. Maximum entropy method: an unconventional approach to explore observables related to the electron density in phengites. Phys Chem Minerals 36, 19–28 (2009). https://doi.org/10.1007/s00269-008-0255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0255-1

Keywords

Navigation