Skip to main content
Log in

Ab initio calculations on the O2 3−-Y3+ center in CaF2 and SrF2: its electronic structure and hyperfine constants

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The O2 3−-Y3+ center in fluorite-type structures (CaF2 and SrF2) has been investigated at the density functional theory (DFT) level using the CRYSTAL06 code. Our calculations were performed by means of the hybrid B3PW method in which the Hartree–Fock exchange is mixed with the DFT exchange functional, using Becke’s three parameter method, combined with the non-local correlation functionals by Perdew and Wang. Our calculations confirm the stability and the molecular character of the O2 3−-Y3+ center. The unpaired electron is shown to be almost exclusively localized on and equally distributed between the two oxygen atoms that are separated by a bond distance of 2.47 Å in CaF2 and 2.57 Å in SrF2. The calculated 17O and 19F hyperfine constants for of the O2 3−-Y3+ center are in good agreement with their corresponding experimental values reported by previous electron paramagnetic resonance and electron nuclear double resonance studies, while discrepancies are notable for the 89Y hyperfine constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:648–5652

    Google Scholar 

  • Becke AD (1996) Density-functional thermochemistry. 4. A new chemical correlation functional and implications for exact exchange mixing. J Chem Phys 104:1040–1046. doi:10.1063/1.470829

    Google Scholar 

  • Bershov LV, Martiros VO, Marfunin AS, Speransk AV (1971) Yttrium-stabilised electron-hole centres in anhydrite. Phys Status Solidi, B Basic Res 44:505–512. doi:10.1002/pssb.2220440207

    Google Scholar 

  • Bill H (1969) Investigation on colour centres in alcaline earth fluorides. Helv Phys Acta 42:771–797

    Google Scholar 

  • Botis SM, Nokhrin S, Pan Y, Xu Y, Bonli T, Sopuck V (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43:1565–1680. doi:10.2113/gscanmin.43.5.1565

    Google Scholar 

  • Carrier P, Wei S-H (2004) Calculated spin-orbit coupling of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends. Phys Rev B 70:035212. doi:10.1103/PhysRevB.70.035212

  • Catti M, Dovesi R, Pavese A, Saunders VR (1991) Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree–Fock study. J Phys Condens Matter 3:4151–4164. doi:10.1088/0953-8984/3/23/004

    Article  Google Scholar 

  • Catti M, Pavese A, Saunders VR (2004) Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree–Fock study. J Phys Condens Matter 3:4151–4164. doi:10.1088/0953-8984/3/23/004

    Article  Google Scholar 

  • Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148. doi:10.1016/S0360-0564(08)60439-3

    Article  Google Scholar 

  • Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F et al (2006) CRYSTAL2006, User’s Manual; http://www.crystal.unito.it, University of Torino, Torino

  • Dyke JM, Wright TG (1990) An ab initio study of the equilibrium geometries and vibrational frequencies of the group-IIA difluorides BeF2, MgF2, CaF2. Chem Phys Lett 78:138–144. doi:10.1016/0009-2614(90)85178-F

    Article  Google Scholar 

  • Frandon J, Lahaye B, Pradal F (1972) Spectra of electronic excitation in CaF2, SrF2, and BaF2 in the 8 to 150 eV range. Phys Status Solidi 53:565–575. doi:10.1002/pssb.2220530218

    Article  Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potential for molecular calculations- potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. doi:10.1063/1.448975

    Article  Google Scholar 

  • Ikeya M (1993) New applications of electron paramagnetic resonance: ESR dating, dosimetry. and spectroscopy, World Scientific, Singapore

    Google Scholar 

  • Jette NA, Gilbert TL, Das TP (1969) Theory of self-trapped hole in alkali halides. Phys Rev 184:884–895. doi:10.1103/PhysRev.184.884

    Article  Google Scholar 

  • Koch W, Holthausen MC (2000) A chemist’s guide to Density Functional Theory. Wiley, Weinheim

    Google Scholar 

  • Lagendij A, Glasbeek M, Vanvoors JD (1973) Paramagnetic oxygen centers in SrTiO3 induced by light. Chem Phys Lett 20:92–95. doi:10.1016/0009-2614(73)85226-1

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  Google Scholar 

  • Lichanot A, Rerat M, Catti M (1995) Theoretical ab initio calculations of the structure factors of fluorite (CaF2). Acta Crystallogr A 51:323–328. doi:10.1107/S0108767394012675

    Article  Google Scholar 

  • Lunsford JH (1973) ESR of adsorbed oxygen species. Catal Rev 8:135–156. doi:10.1080/01614947408071859

    Article  Google Scholar 

  • Mallia G, Orlando R, Roetti C, Ugliengo P, Dovesi R (2001) F center in LiF: a quantum mechanical ab initio investigation of the hyperfine interaction between the unpaired electron at the vacancy and its first seven neighbors. Phys Rev B 63:235102. doi:10.1103/PhysRevB.63.235102

  • Marfunin AS (1979) Spectroscopy. Luminescence and radiation centers in minerals.. Springer, Berlin

    Google Scholar 

  • Merawa M, Llunell M, Orlando R, Geize-Duvignau M, Dovesi R (2003) Structural, electronic and elastic properties of some fluoride crystals: an ab initio study. Chem Phys Lett 368:7–11. doi:10.1016/S0009-2614(02)01787-6

    Article  Google Scholar 

  • Mijalko EA, Dorsett HE, Ford MJ (2004) Trends in the band structures of the group-I and –II oxides. J Chem Phys 120:10799–10806. doi:10.1063/1.1738635

    Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  • Murphy DM, Chiesa M (2004) EPR of paramagnetic centres on solid surfaces. Electron Paramagnetic Reson 19:279–317. doi:10.1039/9781847553560-00279

    Article  Google Scholar 

  • Nicolov M (2000) Shaped single crystals of CaF2. J Cryst Growth 218:62–66. doi:10.1016/S0022-0248(00)00520-0

    Article  Google Scholar 

  • Nilges MJ, Pan Y, Mashkovtsev RI (2008) Radiation-damage-induced defects in quartz. I. Single-crystal W-band EPR study of hole-centers in an electron-irradiated quartz. Phys Chem Miner 32:103–115. doi:10.1007/s00269-007-0203-5

    Google Scholar 

  • Ogoh K, Yamanaka C, Ikeya M, Ito E (1996) Two-center model for radiation induced aluminum hole center in stishovite. J Phys Chem Solids 57:85–88. doi:10.1016/0022-3697(95)00145-X

    Article  Google Scholar 

  • Pan Y, Botis S, Nokhrin S (2006) Application of natural radiation-induced paramagnetic defects in quartz to exploration in sedimentary basins. J China U Geosci 17:258–271. doi:10.1016/S1002-0705(06)60035-6

    Article  Google Scholar 

  • Paton MG, Maslen EN (1965) A refinement of crystal structure of yttria. Acta Crystallogr 19:307–310. doi:10.1107/S0365110X65003365

    Article  Google Scholar 

  • Perdew JP (1991) Electronic structure of solids. Akademie Verlag, Berlin

  • Perdew JP, Wang Y (1986) Accurate and simple density functional for the electronic exchange energy—generalized gradient approximation. Phys Rev B 33:8800–8802. doi:10.1103/PhysRevB.33.8800

    Article  Google Scholar 

  • Perdew JP, Wang Y (1989) Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys Rev B 40:3399–3399. doi:10.1103/PhysRevB.40.3399

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Google Scholar 

  • Pisani C (1996) Quantum mechanical ab-initio calculations of the properties of crystalline materials. Lecture Notes in Chemistry 67, Springer, Berlin

  • Piskunov S, Heifets E, Eglitis RI, Borstel G (2004) Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study. Comput Mater Sci 29:165–178. doi:10.1016/j.commatsci.2003.08.036

    Article  Google Scholar 

  • Requardt A, Lehmann G (1985) An O2 3− radiation defect in A1PO4 and GaPO4. J Phys Chem Solids 46:107–112. doi:10.1016/0022-3697(85)90203-3

    Article  Google Scholar 

  • Salzner U, Schleyer PV (1990) An initio studies of the geometries and electronic structures of CaF2 and CaCl2. Chem Phys Lett 172:461–470. doi:10.1016/0009-2614(90)80140-9

    Article  Google Scholar 

  • Schweizer S, Spaeth JM (1999) New oxygen hole centres in the X-ray storage phosphor BaFBr. J Phys Condens Matter 11:1723–1733. doi:10.1088/0953-8984/11/7/006

    Article  Google Scholar 

  • Segall MD, Shah R, Pickard CJ, Payne MC (1996) Population analysis of plane-wave electronic structure calculation of bulk materials. Phys Rev B 54:16317–16320. doi:10.1103/PhysRevB.54.16317

    Article  Google Scholar 

  • Shi H, Eglitis RI, Borstel G (2005) An initio calculations of the CaF2 electronic structure and F centers. Phys Rev B 72:045109. doi:10.1103/PhysRevB.72.045109

  • Solntsev VP, Shcherbakova MY, Schastnev PV (1973) EPR study of structural defects in CaWO4. Zh Strukt Chim 14:222–229

    Google Scholar 

  • Towler M (1995) Crystal98 Resources Page. http://www.tcm.phy.cam.ac.uk/~mdt26/basis_sets/Y_basis.txt

  • Valenzano L, Torres FJ, Doll K, Pascale F, Zicovich-Wilson CM, Dovesi R (2006) Ab Initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. J Phys Chem 220:893–912

    Google Scholar 

  • Verstraete M, Gonze X (2003) First-principles calculations of the electronic, dielectric and dynamical properties of CaF2. Phys Rev B 68:195123. doi:10.1103/PhysRevB.68.195123

  • Wagner GR, Murphy J (1972) Paramagnetic hole centers in CeO2. Phys Rev B 6:1638–1644. doi:10.1103/PhysRevB.6.1638

    Article  Google Scholar 

  • Weil J, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications, Wiley, New York

  • Wyckoff RWG (1963) Crystal structures 1, 2nd edn. Interscience, New York

Download references

Acknowledgments

We thank two anonymous reviewers and Dr. M. Matsui for incisive criticism and helpful suggestions, and the Natural Science and Engineering Research Council (NSERC) of Canada for financial support of this study. SMB is also grateful to the University of Saskatchewan for a Dean’s Scholarship. This research has been enabled by the use of WestGrid computing resources, which are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC Advanced Education, and the participating research institutions. WestGrid equipment is provided by IBM, Hewlett Packard and SGI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanda M. Botis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botis, S.M., Adriaens, D.A. & Pan, Y. Ab initio calculations on the O2 3−-Y3+ center in CaF2 and SrF2: its electronic structure and hyperfine constants. Phys Chem Minerals 36, 1–7 (2009). https://doi.org/10.1007/s00269-008-0253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0253-3

Keywords

Navigation