Skip to main content
Log in

Structural investigation of the synthetic CaAn(PO4)2 (An = Th and Np) cheralite-like phosphates

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystallographic structures of the synthetic cheralite, CaTh(PO4)2, and its homolog CaNp(PO4)2 have been investigated by X-ray diffraction at room temperature. Rietveld analyses showed that both compounds crystallize in the monoclinic system and are isostructural to monazite LnPO4 (Ln = La to Gd). The space group is P21/n (I.T. = 14) with Z = 2. The refined lattice parameters of CaTh(PO4)2 are a = 6.7085(8) Å, b = 6.9160(6) Å, c = 6.4152(6) Å, and β = 103.71(1)° with best fit parameters R wp = 4.87%, R p = 3.69% and R B = 3.99%. For CaNp(PO4)2, we obtained a = 6.6509(5) Å, b = 6.8390(3) Å, c = 6.3537(8) Å, and β = 104.12(6)° and R wp = 6.74%, R p = 5.23%, and R B = 6.05%. The results indicate significant distortions of bond length and angles of the PO4 tetrahedra in CaTh(PO4)2 and to a lesser extent in CaNp(PO4)2. The structural distortions were confirmed by Raman spectroscopy of CaTh(PO4)2. A comparison with the isostructural compounds LnPO4 (Ln = Ce and Sm) confirmed that the substitution of the large rare earth trivalent cations with Ca2+ and Th4+ introduces a distortion of the PO4 tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldred AT (1984) Cell volumes of APO4, AVO4 and ANbO4 compounds, where A = Sc, Y, La- Lu. Acta Crystallogr B 40:569–574. doi:10.1107/S0108768184002718

    Article  Google Scholar 

  • Beall GW, Boatner LA, Mullica DF, Milligan WO (1981) The structure of cerium orthophosphate, a synthetic analogue of monazite. J Inorg Nucl Chem 43:101–105. doi:10.1016/0022-1902(81)80443-5

    Article  Google Scholar 

  • Begun GM, Beall GW, Boatner LA, Gregor WJ (1981) Raman spectra of the rare earth orthophosphates. J Raman Spectrosc 11:248–253. doi:10.1002/jrs.1250110411

    Article  Google Scholar 

  • Bregiroux D, Terra O, Audubert F, Dacheux N, Serin V, Podor R et al (2007) Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg Chem 46:10327–10382. doi:10.1021/ic7012123

    Article  Google Scholar 

  • Burakov BE, Yagovkina MA, Zamoryanskaya MV, Garbuzov VM, Zirlin VA, Kitsay AA (2005): Self irradiation of ceramics and single crystals doped with plutonium 238. Recent advances in actinide science, Proceedings Actinides 2005 Conference, Manchester July 2005, RSC Publishing

  • Dusausoy Y, Ghermani NE, Podor R, Cuney M (1996) Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure. Eur J Mineral 8:667–673

    Google Scholar 

  • Hikichi Y, Hukuo K, Shiokawa J (1978) Solid solutions in the systems monazite (CePO4)—huttonite (ThSiO4) and monazite—Ca0.5Th0.5PO4. Nippon Kagaku Kaishi 12:1635–1640

    Google Scholar 

  • Jardin R, Pavel CC, Raison PE, Bouëxière D, Santa-Cruz H, Konings RJM, et al (2008) The high temperature behaviour of PuPO4 monazite and of some other related compounds. J Nucl Mater doi:10.1016/j.jnucmat.2008.05.011

  • Linthout K (2007) Tripartite division of the system 2REEPO4 - CaTh(PO4)2–2ThSiO4, discreditation of Brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can Mineral 45:503–508. doi:10.2113/gscanmin.45.3.503

    Article  Google Scholar 

  • McCarthy GJ, White WB, Pfoertsch DE (1978) Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal. Mater Res Bull 13:1239–1245. doi:10.1016/0025-5408(78)90215-5

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520. doi:10.1016/S0016-7037(98)00174-4

    Article  Google Scholar 

  • Montel JM, Devidal JL, Avignant D (2002) X-ray diffraction study of brabantite-monazite solid solutions. Chem Geol 191:89–104. doi:10.1016/S0009-2541(02)00150-X

    Article  Google Scholar 

  • Mullica DF, Grossie DA, Boatner LA (1985) Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4. Inorg Chim Acta 109:105–110. doi:10.1016/S0020-1693(00)84549-1

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Mineral 80:21–26

    Google Scholar 

  • Popović L, de Waal D, Boeyens JCA (2005) Correlation between Raman wavenumbers and P–O bond lengths in crystalline inorganic phosphates. J Raman Spectrosc 36:2–11. doi:10.1002/jrs.1253

    Article  Google Scholar 

  • Podor R, Cuney M, Nguywn Trung C (1995) Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780°C and 200 MPa. Am Mineral 80:1261–1268

    Google Scholar 

  • Podor R (1995) Raman spectra of the actinide-bearing monazites. Eur J Mineral 7:1353–1360

    Google Scholar 

  • Podor R, Cuney M (1997) Experimental study of Th-bearing (780°C, 200 MPa); implication for monazite and actinide orthophosphate stability. Am Mineral 82:765–771

    Google Scholar 

  • Popa, K, Shvareva, T., Mazeina, L., Colineau, E., Wastin, F., Konings, R.J.M., Navrotsky, A. (2008) Thermodynamic properties of CaTh(PO4)2 synthetic cheralite. Am Mineral 93(8–9)

    Google Scholar 

  • Rodriguez-Carjaval J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69. doi:10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  • Rose D (1980) Brabantite, CaTh[PO4]2, a new mineral of the monazite group. N Jb Min Mh 6:247–257

    Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:59–62. doi:10.1007/s00269-001-0232-4

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalshogenides. Acta Crystallogr A 32:751–766. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  • Silva EN, Ayala AP, Guedes I, Paschoalm CWA, Moreiram RL, Loong CK et al (2002) Vibrational spectra of monazite-type rare-earth orthophosphates. Opt Mater 29:224–230. doi:10.1016/j.optmat.2005.09.001

    Article  Google Scholar 

  • Tabuteau A, Pagès M, Livet J, Musikas C (1986) Crystallochemical properties of transuranium phosphates. J Less Common Met 121:650–651. doi:10.1016/0022-5088(86)90590-4

    Article  Google Scholar 

  • Tabuteau A, Pagès M, Livet J, Musikas C (1988) Monazite-like phases containing transuranium elements (neptunium and plutonium). J Mater Sci Lett 7:1315–1317. doi:10.1007/BF00719969

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Novitchi (State University, Chisinau, Moldova) for his assistance during the IR measurements. K.P. and C.C.P. acknowledges the European Commission for support given in the frame of program “Training and Mobility of Researchers”. Participation to the European Commission-JRC-ITU Actinide User Laboratory program is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raison, P.E., Jardin, R., Bouëxière, D. et al. Structural investigation of the synthetic CaAn(PO4)2 (An = Th and Np) cheralite-like phosphates. Phys Chem Minerals 35, 603–609 (2008). https://doi.org/10.1007/s00269-008-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0252-4

Keywords

Navigation