Physics and Chemistry of Minerals

, Volume 35, Issue 10, pp 603–609 | Cite as

Structural investigation of the synthetic CaAn(PO4)2 (An = Th and Np) cheralite-like phosphates

  • Philippe E. Raison
  • Regis Jardin
  • Daniel Bouëxière
  • Rudy J. M. Konings
  • Thorsten Geisler
  • Claudiu C. Pavel
  • Jean Rebizant
  • Karin PopaEmail author
Original Paper


The crystallographic structures of the synthetic cheralite, CaTh(PO4)2, and its homolog CaNp(PO4)2 have been investigated by X-ray diffraction at room temperature. Rietveld analyses showed that both compounds crystallize in the monoclinic system and are isostructural to monazite LnPO4 (Ln = La to Gd). The space group is P21/n (I.T. = 14) with Z = 2. The refined lattice parameters of CaTh(PO4)2 are a = 6.7085(8) Å, b = 6.9160(6) Å, c = 6.4152(6) Å, and β = 103.71(1)° with best fit parameters R wp = 4.87%, R p = 3.69% and R B = 3.99%. For CaNp(PO4)2, we obtained a = 6.6509(5) Å, b = 6.8390(3) Å, c = 6.3537(8) Å, and β = 104.12(6)° and R wp = 6.74%, R p = 5.23%, and R B = 6.05%. The results indicate significant distortions of bond length and angles of the PO4 tetrahedra in CaTh(PO4)2 and to a lesser extent in CaNp(PO4)2. The structural distortions were confirmed by Raman spectroscopy of CaTh(PO4)2. A comparison with the isostructural compounds LnPO4 (Ln = Ce and Sm) confirmed that the substitution of the large rare earth trivalent cations with Ca2+ and Th4+ introduces a distortion of the PO4 tetrahedra.


Cheralite Tetravalent actinide phosphates Rietveld analysis Thorium Neptunium 



We thank Dr. G. Novitchi (State University, Chisinau, Moldova) for his assistance during the IR measurements. K.P. and C.C.P. acknowledges the European Commission for support given in the frame of program “Training and Mobility of Researchers”. Participation to the European Commission-JRC-ITU Actinide User Laboratory program is also acknowledged.


  1. Aldred AT (1984) Cell volumes of APO4, AVO4 and ANbO4 compounds, where A = Sc, Y, La- Lu. Acta Crystallogr B 40:569–574. doi: 10.1107/S0108768184002718 CrossRefGoogle Scholar
  2. Beall GW, Boatner LA, Mullica DF, Milligan WO (1981) The structure of cerium orthophosphate, a synthetic analogue of monazite. J Inorg Nucl Chem 43:101–105. doi: 10.1016/0022-1902(81)80443-5 CrossRefGoogle Scholar
  3. Begun GM, Beall GW, Boatner LA, Gregor WJ (1981) Raman spectra of the rare earth orthophosphates. J Raman Spectrosc 11:248–253. doi: 10.1002/jrs.1250110411 CrossRefGoogle Scholar
  4. Bregiroux D, Terra O, Audubert F, Dacheux N, Serin V, Podor R et al (2007) Solid-state synthesis of monazite-type compounds containing tetravalent elements. Inorg Chem 46:10327–10382. doi: 10.1021/ic7012123 CrossRefGoogle Scholar
  5. Burakov BE, Yagovkina MA, Zamoryanskaya MV, Garbuzov VM, Zirlin VA, Kitsay AA (2005): Self irradiation of ceramics and single crystals doped with plutonium 238. Recent advances in actinide science, Proceedings Actinides 2005 Conference, Manchester July 2005, RSC PublishingGoogle Scholar
  6. Dusausoy Y, Ghermani NE, Podor R, Cuney M (1996) Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure. Eur J Mineral 8:667–673Google Scholar
  7. Hikichi Y, Hukuo K, Shiokawa J (1978) Solid solutions in the systems monazite (CePO4)—huttonite (ThSiO4) and monazite—Ca0.5Th0.5PO4. Nippon Kagaku Kaishi 12:1635–1640Google Scholar
  8. Jardin R, Pavel CC, Raison PE, Bouëxière D, Santa-Cruz H, Konings RJM, et al (2008) The high temperature behaviour of PuPO4 monazite and of some other related compounds. J Nucl Mater doi: 10.1016/j.jnucmat.2008.05.011
  9. Linthout K (2007) Tripartite division of the system 2REEPO4 - CaTh(PO4)2–2ThSiO4, discreditation of Brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can Mineral 45:503–508. doi: 10.2113/gscanmin.45.3.503 CrossRefGoogle Scholar
  10. McCarthy GJ, White WB, Pfoertsch DE (1978) Synthesis of nuclear waste monazites, ideal actinide hosts for geologic disposal. Mater Res Bull 13:1239–1245. doi: 10.1016/0025-5408(78)90215-5 CrossRefGoogle Scholar
  11. Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520. doi: 10.1016/S0016-7037(98)00174-4 CrossRefGoogle Scholar
  12. Montel JM, Devidal JL, Avignant D (2002) X-ray diffraction study of brabantite-monazite solid solutions. Chem Geol 191:89–104. doi: 10.1016/S0009-2541(02)00150-X CrossRefGoogle Scholar
  13. Mullica DF, Grossie DA, Boatner LA (1985) Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4. Inorg Chim Acta 109:105–110. doi: 10.1016/S0020-1693(00)84549-1 CrossRefGoogle Scholar
  14. Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Mineral 80:21–26Google Scholar
  15. Popović L, de Waal D, Boeyens JCA (2005) Correlation between Raman wavenumbers and P–O bond lengths in crystalline inorganic phosphates. J Raman Spectrosc 36:2–11. doi: 10.1002/jrs.1253 CrossRefGoogle Scholar
  16. Podor R, Cuney M, Nguywn Trung C (1995) Experimental study of the solid solution between monazite-(La) and (Ca0.5U0.5)PO4 at 780°C and 200 MPa. Am Mineral 80:1261–1268Google Scholar
  17. Podor R (1995) Raman spectra of the actinide-bearing monazites. Eur J Mineral 7:1353–1360Google Scholar
  18. Podor R, Cuney M (1997) Experimental study of Th-bearing (780°C, 200 MPa); implication for monazite and actinide orthophosphate stability. Am Mineral 82:765–771Google Scholar
  19. Popa, K, Shvareva, T., Mazeina, L., Colineau, E., Wastin, F., Konings, R.J.M., Navrotsky, A. (2008) Thermodynamic properties of CaTh(PO4)2 synthetic cheralite. Am Mineral 93(8–9)Google Scholar
  20. Rodriguez-Carjaval J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69. doi: 10.1016/0921-4526(93)90108-I CrossRefGoogle Scholar
  21. Rose D (1980) Brabantite, CaTh[PO4]2, a new mineral of the monazite group. N Jb Min Mh 6:247–257Google Scholar
  22. Seydoux-Guillaume AM, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:59–62. doi: 10.1007/s00269-001-0232-4 CrossRefGoogle Scholar
  23. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalshogenides. Acta Crystallogr A 32:751–766. doi: 10.1107/S0567739476001551 CrossRefGoogle Scholar
  24. Silva EN, Ayala AP, Guedes I, Paschoalm CWA, Moreiram RL, Loong CK et al (2002) Vibrational spectra of monazite-type rare-earth orthophosphates. Opt Mater 29:224–230. doi: 10.1016/j.optmat.2005.09.001 CrossRefGoogle Scholar
  25. Tabuteau A, Pagès M, Livet J, Musikas C (1986) Crystallochemical properties of transuranium phosphates. J Less Common Met 121:650–651. doi: 10.1016/0022-5088(86)90590-4 CrossRefGoogle Scholar
  26. Tabuteau A, Pagès M, Livet J, Musikas C (1988) Monazite-like phases containing transuranium elements (neptunium and plutonium). J Mater Sci Lett 7:1315–1317. doi: 10.1007/BF00719969 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Philippe E. Raison
    • 1
  • Regis Jardin
    • 1
  • Daniel Bouëxière
    • 1
  • Rudy J. M. Konings
    • 1
  • Thorsten Geisler
    • 2
  • Claudiu C. Pavel
    • 1
  • Jean Rebizant
    • 1
  • Karin Popa
    • 3
    Email author
  1. 1.European Commission, Joint Research CentreInstitute for Transuranium ElementsKarlsruheGermany
  2. 2.Institut für MineralogieWestfälische Wilhelms-UniversiätMünsterGermany
  3. 3.Department of ChemistryAl.I. Cuza UniversityIaşiRomania

Personalised recommendations