Skip to main content

Advertisement

Log in

First-principles simulation of high-pressure polymorphs in MgAl2O4

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have used density functional theory to investigate the stability of MgAl2O4 polymorphs under pressure. Our results can reasonably explain the transition sequence of MgAl2O4 polymorphs observed in previous experiments. The spinel phase (stable at ambient conditions) dissociates into periclase and corundum at 14 GPa. With increasing pressure, a phase change from the two oxides to a calcium-ferrite phase occurs, and finally transforms to a calcium-titanate phase at 68 GPa. The calcium-titanate phase is stable up to at least 150 GPa, and we did not observe a stability field for a hexagonal phase or periclase + Rh2O3(II)-type Al2O3. The bulk moduli of the phases calculated in this study are in good agreement with those measured in high-pressure experiments. Our results differ from those of a previous study using similar methods. We attribute this inconsistency to an incomplete optimization of a cell shape and ionic positions at high pressures in the previous calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) High-pressure transitions in the system MgAl2O4–CaAl2O4: a new hexagonal aluminous phase with implication for the lower mantle. Phys Earth Planet Int 115:67–77

    Article  Google Scholar 

  • Beltrán A, Gracia L, Andrés J, Franco R, Recio JM (2002) Stability of MgAl2O4 under high-pressure conditions. High Press Res 22:447–450

    Article  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  • Catti M (2001) High-pressure stability, structure and compressibility of Cmcm-MgAl2O4: an ab initio study. Phys Chem Miner 28:729–736

    Article  Google Scholar 

  • Catti M, Valerio G, Dovesi R, Causà M (1994) Quantum-mechanical calculation of the solid-state equilibrium MgO + αAl2O3 → MgAl2O4 (spinel) versus pressure. Phys Rev B 49:14179–14187

    Article  Google Scholar 

  • d’Arco P, Silvi B, Roetti C, Orlando R (1991) Comparative study of spinel compounds: a pseudopotential periodic Hartree–Fock calculation of Mg2SiO4, Mg2FeO4, Al2MgO4, and GaMgO4. J Geophys Res 96:6107–6112

    Article  Google Scholar 

  • Dewaele A, Fiquet G, Andrault D, Hausermann D (2000) P-V-T equation of state of periclase from synchrotron radiation measurements. J Geophys Res 105:2869–2877

    Article  Google Scholar 

  • Finger LW, Hazen RM, Hofmeister AM (1986) High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): comparisons with silicate spinels. Phys Chem Miner 13:215–220

    Article  Google Scholar 

  • Gasparik T, Tripathi A, Paeise JB (2000) Structure of a new Al-rich phase, [K,Na]0.9[Mg,Fe]2[Mg,Fe,Al,Si]6O12, synthesized at 24 GPa. Am Mineral 85:613–618

    Google Scholar 

  • Gracia L, Beltrán A, Andrés J, Franco R, Recio M (2002) Quantum-mechanical simulation of MgAl2O4 under high pressure. Phys Rev B 66:224114

    Article  Google Scholar 

  • Guignot N, Andrault D (2004) Equations of state of Na–K–Al host phases and implications for MORB density in the lower mantle. Phys Earth Planet Int 143-144:107–128

    Article  Google Scholar 

  • Irifune T (1993) Phase transformations in the earth’s mantle and subducting slabs: implications for their compositions, seismic velocity and density structures and dynamics. Island Arc 2:55–71

    Article  Google Scholar 

  • Irifune T, Naka H, Sanehira T, Inoue T, Funakoshi K (2002) In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Phys Chem Miner 29:645–654

    Article  Google Scholar 

  • Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252–255

    Article  Google Scholar 

  • Kirfel A, Eichhorn K (1990) Accutare structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr A46:271–284

    Google Scholar 

  • Kojitani H, Hisatomi R, Akaogi M (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4. Am Mineral 92:1112–1118

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Lin JF, Degtyareva O, Prewitt CT, Dera P, Sata N, Gregoryanz E, Mao HK, Hemley R (2004) Crystal structure of a high-pressure/high-temperature phase of alumina by in situ X-ray diffraction. Nat Mater 3:389–393

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Int 150:239–263

    Article  Google Scholar 

  • Liu LG (1978) A new high-pressure phase of spinel. Earth Planet Sci Lett 41:398–404

    Article  Google Scholar 

  • Miura H, Hamada Y, Suzuki T, Akaogi M, Miyajima N, Fujino K (2000) Crystal structure of CaMg2Al6O12, a new Al-rich high pressure form. Am Mineral 85:1799–1803

    Google Scholar 

  • Mo S-D, Ching WY (1996) Electric structure of normal, inverse, and partially inverse spinels in the MgAl2O4 system. Phys Rev B 54:16555–16561

    Article  Google Scholar 

  • Ono S, Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet Sci Lett 236:914–932

    Article  Google Scholar 

  • Ono S, Hirose K, Kikegawa T, Saito Y (2002) The compressibility of a natural composition calcium ferrite-type aluminous phase to 70 GPa. Phys Earth Planet Int 131:311–318

    Article  Google Scholar 

  • Ono S, Ohishi Y, Isshiki M, Watanuki T (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. J Geophys Res 110:B02208

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2006a) The stability and compressibility of MgAl2O4 high-pressure polymorphs. Phys Chem Miner 33:200–206

    Article  Google Scholar 

  • Ono S, Oganov AR, Koyama T, Shimizu H (2006b) Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: implications for the electrical conductivity of the base of the lower mantle. Earth Planet Sci Lett 246:326–335

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2006c) Structural properties of CaIrO3-type MgSiO3 up to 144 GPa. Am Mineral 91:475–478

    Article  Google Scholar 

  • Pendás AM, Costales A, Blanco MA, Recio JM, Luaña V (2000) Local compressibilities in crystals. Phys Rev B 62:13970–13978

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Recio JM, Franco R, Pendás AM, Blanco MA, Pueyo L (2001) Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Phys Rev B 63:184101

    Article  Google Scholar 

  • Richet P, Xu JA, Mao HK (1988) Quasi-hydrostatic compression of ruby to 500 kbar. Phys Chem Miner 16:207–211

    Article  Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and moon. Springer, New York

    Google Scholar 

  • Speziale S, Zha CS, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A. S. Côté for his valuable technical comments. This work made use of the UCL research computing facilities and of HPCx, the UK’s national high-performance computing service at the Daresbury Laboratory. This work was supported by NERC Computational Mineral Physics Consortium, UK and Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Ono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, S., Brodholt, J.P. & Price, G.D. First-principles simulation of high-pressure polymorphs in MgAl2O4 . Phys Chem Minerals 35, 381–386 (2008). https://doi.org/10.1007/s00269-008-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0231-9

Keywords

Navigation