Skip to main content
Log in

A model study of dickite intercalated with formamide and N-methylformamide

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Local geometry and orientation of intercalated molecules of formamide (FA) and N-methylformamide (NMFA) in the clay mineral dickite (D) was studied by means of Density Functional Theory (DFT) calculations. Ten configurations with different orientation of the intercalated molecule were investigated for both D_FA and D_NMFA intercalates. Four groups of relaxed structures sorted by the calculated total electronic energy were found in both cases. The experimental geometry of the D_FA intercalate was denoted as the most stable structure from the investigated models. The differences in the total electronic energy of all D_FA configurations are within the interval of ∼92 kJ/mol. On one hand FA forms intercalates specifically and a close relation between the orientation of the FA molecules in the interlayer space and the stability of a particular configuration has been observed. On the other hand, N-methylformamide forms intercalated structures non-specifically. Small differences in the total energy, not larger than 18 kJ/mol, are observed for different orientations of the NMFA molecules The reorientation of the intercalated molecules has only a small effect on the stabilization of the D_NMFA intercalate what is in contrast with the D_FA intercalate. It was also observed that the experimental D_NMFA configuration is not the most stable. A small variation of the total electronic energy of different configurations correlates with small changes of the orientation of the dipole moment of the intercalated NMFA molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

B3LYP:

Becke-style parameter density functional theory (using the Lee-Yang-Parr correlation functional)

References

  • Adams JM, Jefferson DA (1976) The crystal structure of a Dickite: Formamide intercalate Al2Si2O5(OH)4.HCONH2. Acta Cryst B 32:1180–1183

    Article  Google Scholar 

  • Adams JM (1978) Unifying features relating to the 3D structures of some intercalates of kaolinite. Clays Clay Miner 26:291–295

    Article  Google Scholar 

  • Adams JM (1979) The crystal structure of a Dickite:N-methylformamide intercalate [Al2Si2O5(OH)4.HCONHCH3]. Acta Cryst B 35:1084–1088

    Article  Google Scholar 

  • Akhter MS, Alawi SM (2003) A comparison of micelle formation of ionic surfactants in formamide, in N-methylformamide and in N,N-dimethylformamide. Colloids Surf A Physicochem Eng Aspects 219:281–290

    Article  Google Scholar 

  • Balan E, Lazzeri M, Saitta AM, Allard T, Fuchs Y, Mauri F (2005) First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite. Am Mineral 90:50–60

    Article  Google Scholar 

  • Balan E, Lazzeri M, Morin G, Mauri F (2006) First-principles study of the OH-stretching modes of gibbsite. Am Mineral 91:115–119

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner , Lischka H (2001a) Ab initio density functional theory applied to the structure and proton dynamics of clays. Chem Phys Lett 333:479–484

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner J, Lischka H (2001b) Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study. Am Mineral 86:1057–1065

    Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  • Čapková P, Burda JV, Weiss Z (1999) Modelling of Aniline-Vermiculite and Tetramethylammonium-Vermiculite; Test for force fields. J Mol Model 5:8–16

    Article  Google Scholar 

  • Deng Y, Dixon JB, White GN (2003) Molecular configurations and orientations of hydrazine between structural layers of kaolinite. J Colloid Interface Sci 257:208–227

    Article  Google Scholar 

  • Elbokl TA, Detellier C (2006) Aluminosilicate nanohybrid materials. Intercalation of polystyrene in kaolinite. J Phys Chem Solid 67:950–955

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria, GE, Robb MA, Cheeseman JR et al (1998) Gaussian 98, Revision A.7. Gaussian Inc., Pittsburgh, PA

  • Frost RL, Tran TH, Kristof J (1997) FT-Raman spectroscopy of the lattice region of kaolinite and its intercalates. Vibrational Spectrosc 13:175–186

    Article  Google Scholar 

  • Frost RL, Kristof J (1997) Intercalation of halloysite: a Raman spectroscopic study. Clays Clay Miner 45:551–563

    Article  Google Scholar 

  • Frost RL, Kristof J, Horvath E, Kloprogge (1999) Deintercalation of dimethylsulfoxide intercalated kaolinites—DTA/TGA and Raman spectroscopic study. Thermochimica Acta 327:155–166

    Article  Google Scholar 

  • Greenwell HC, Jones W, Coveney PV, Stackhouse S (2006) On the application of computer simulation techniques to anionic and cationic clays: a materials chemistry perspective. J Mat Chem 16:708–723

    Article  Google Scholar 

  • Horváth E, Kristóf J, Frost RL, Jakab E, Makó E, Vágvölgyi V (2005) Identification of superactive centres in thermally treated formamide-intercalated kaolinite. J Colloid Interface Sci 289:132–138

    Article  Google Scholar 

  • Kelleher BP, Sutton D, Dwyer TF (2002) The effect of kaolinite intercalation on the structural arrangements of N-methylformamide and 1-Methyl-2-pyrrolidone. J Colloid Interface Sci 255:219–224

    Article  Google Scholar 

  • Kresse G, Furthműller J (1996a) Efficient iterative scheme for ab initio total energy calculations using a plane-wave basis set. Phys Rev B54:11169–11186

    Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficiecy of ab initio total-energy calculations for metals and semiconductors using a planewave basis set. J Comp Mat Sci 6:15–50

    Article  Google Scholar 

  • Kresse G, Hafner J (1993) Ab-initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48:13115–13118

    Article  Google Scholar 

  • Kresse G, Hafner J (1994) Norm conserving and ultrasoft potentials for first-row and transition-elements. J Phys Condens Matt 6:8245–8527

    Article  Google Scholar 

  • Kresse G, Joubert J (1999) From ultrasoft potentials to the projector augmented wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  • Michalková A, Tunega D, Turi Nagy L (2002) Theoretical study of interactions of dickite and kaolinite with small organic molecules. Theochem 581:37–49

    Article  Google Scholar 

  • Michalková A, Tunega D (2007) Kaolinite: dimethylsulfoxide intercalates a theoretical study. J Phys Chem C 111:11259–11266

    Article  Google Scholar 

  • Mitchel WI (1990) Pillared layered structures. Elsevier, London, p 252

    Google Scholar 

  • Monkhorst H, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Olejnik S, Posner AM, Quirk JP (1970) The intercalation of polar organic compounds into kaolinite. Clay Miner 8:421–434

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic presentation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  Google Scholar 

  • Raupach M, Barron PF, Thompson JG (1987) Nuclear magnetic resonance, infrared, and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clays Clay Miner 35:208–219

    Article  Google Scholar 

  • Scholtzová E, Smrčok Ľ (2007) On recognition of FA/NMFA-dickite intercalates—total energy vs intensity data. Acta Cryst A63, p. s272. European Crystallographic Meeting ECM24 Marrakech, Morroco

  • Seidl W, Breu J (2005) Single crystal structural refinement of tetramethyl ammonium-hectorite. Z Kristallogr 220:169–176

    Article  Google Scholar 

  • Skarmountsos I, Samios J (2004) Molecular dynamics of cis/trans N-methylformamide liquid mixture using a new optimized all atom rigid force field. Chem Pys Lett 384:108–113

    Article  Google Scholar 

  • Spek AL (2003) PLATON, A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Steiner T (2002) The Hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    Article  Google Scholar 

  • Thompson JG, Cuff C (1985) Crystal structure of kaolinite: dimethyl sulfoxide intercalate. Clays Clay Miner 33(6):490–500

    Article  Google Scholar 

  • Thompson JG, Uwins PJR, Whittaker AK, Mackinnon IDR (1992) Structural characterisation of kaolinite: NaCl intercalate and its derivatives. Clays Clay Miner 40(4):369–380

    Article  Google Scholar 

  • Vahedi-Faridi A, Guggenheim S (1997) Crystal structure of tetramethylammonium-exchanged vermiculite. Clays Clay Miner 45:859–866

    Article  Google Scholar 

  • Xie X, Hayashi S (1999) NMR study of kaolinite intercalation compounds with formamide and its derivatives. 2. Dynamics of guest molecules. J Phys Chem B 103:5956–5962

    Article  Google Scholar 

  • Zamama M, Knidiri M (2000) IR study of dickite-formamide intercalate, Al2Si2O5(OH)4-H2NCOH. Spectrochim Acta A 56:1139–1147

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian Science Fund (Projects P17020-PHYS and P17967-N11), by the Slovak Research and Development Agency (Project APVV-51-50505), and by the Hertha-Firnberg fellowship of one of us (DT). This paper is dedicated to the memory of our friend and colleague Ladislav Turi Nagy

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Scholtzová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtzová, E., Benco, L. & Tunega, D. A model study of dickite intercalated with formamide and N-methylformamide. Phys Chem Minerals 35, 299–309 (2008). https://doi.org/10.1007/s00269-008-0223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0223-9

Keywords

Navigation