Skip to main content

Advertisement

Log in

In situ strength measurements on natural upper-mantle minerals

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Using in situ strength measurements at pressures up to 10 GPa and at room temperature, 400, 600, and 700°C, we examined rheological properties of olivine, orthopyroxene, and chromian-spinel contained in a mantle-derived xenolith. Mineral strengths were estimated using widths of X-ray diffraction peaks as a function of pressure, temperature, and time. Differential stresses of all minerals increase with increasing pressure, but they decrease with increasing temperature because of elastic strain on compression and stress relaxation during heating. During compression at room temperature, all minerals deform plastically at differential stress of 4–6 GPa. During subsequent heating, thermally induced yielding is observed in olivine at 600°C. Neither orthopyroxene nor spinel shows complete stress relaxation, but both retain some stress even at 700°C. The strength of the minerals decreases in the order of chromian-spinel ≈ orthopyroxene > olivine for these conditions. This order of strength is consistent with the residual pressure of fluid inclusions in mantle xenoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson OL, Isaak DG (1995) Elastic constants of mantle minerals at high temperature. In: Ahrens TJ (ed) Mineral Physics & Crystallography, AGU Reference Shelf 2, pp 64–97

  • Andersen T, Neumann E-R (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320

    Article  Google Scholar 

  • Bass JD (1995) Elasticity of minerals, glasses and melts In: Ahrens TJ (ed) Mineral Physics & Crystallography, AGU Reference Shelf 2, pp 45–63

  • Chen J, Inoue T, Weidner DJ et al (1998) Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophys Res Lett 25:575–578

    Article  Google Scholar 

  • Chen J, Weidner DJ, Vaughan MT (2002) The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419:824–826

    Article  Google Scholar 

  • Decker DL (1971) High-pressure equation of state for NaCl, KCl and CsCl. J Appl Phys 42:3239–3244

    Article  Google Scholar 

  • De Vivo B, Frezzotti ML, Lima A et al (1988) Spinel lherzolite nodules from Oahu Island (Hawaii): a fluid inclusion study. Bull Mineral 111:307–319

    Google Scholar 

  • Frezzotti ML, Burke EAJ, DeVivo B et al (1992) Mantle fluids in pyroxenite nodules from Salt Lake Crater (Oahu, Hawaii). Eur J Mineral 4:1137–1153

    Google Scholar 

  • Gerward L, Morup S, Topsoe H (1976) Particle size and strain broadening in energy-dispersive X-ray powder patterns. J App Phys 47:822–825

    Article  Google Scholar 

  • Green HW, Borch RS (1987) The pressure dependence of creep. Acta Metall 35:1301–1315

    Article  Google Scholar 

  • Hirano N, Yamamoto J, Kagi H et al (2004) Young olivine xenocryst-bearing alkali-basalt from the oceanward slope of the Japan Trench. Contrib Mineral Petrol 148:47–54

    Article  Google Scholar 

  • Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory, J AGU Geophys Monogr 138:83–105

  • Irifune T (2002) Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics. Min Mag 66:769–790

    Article  Google Scholar 

  • Karato S-I, Wu P (1993) Rheology of the upper mantle a synthesis. Science 260:771–778

    Article  Google Scholar 

  • Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414

    Article  Google Scholar 

  • Kohlstedt DL, Wang Z (2001) Grain-boundary sliding accommodated dislocation creep in dunite. EOS Trans AGU 82:F1137

    Google Scholar 

  • Kohlstedt DL, Goetze C, Durham WB et al (1975) A new technique for decorating dislocations in olivine. Science 191:1045–1046

    Article  Google Scholar 

  • Kung J, Li B, Uchida T et al (2004) In situ measurements of sound velocities and densities across the orthopyroxene—high-pressure clinopyroxene transition in MgSiO3 at high pressure. Phys Earth Planet Int 147:27–44

    Article  Google Scholar 

  • Li L, Weidner D, Raterron P et al (2004) Stress measurements of deforming olivine at high pressure. Phys Earth Planet Int 143–144:357–367

    Article  Google Scholar 

  • Li L, Weidner D, Raterron P et al (2006) Deformation of olivine at mantle pressure using D-DIA. Eur J Mineral 18:7–19

    Article  Google Scholar 

  • Li L, Addad A, Weidner D et al (2007) High pressure deformation in two-phase aggregates. Tectonophysics 439:107–117

    Article  Google Scholar 

  • Mackwell SJ (1991) High-temperature rheology of enstatite: implications for creep in the mantle. Geophys Res Lett 18:2027–2030

    Article  Google Scholar 

  • Mitchell TE, Hwang L, Heuer AH (1976) Deformation in spinel. J Material Sci 11:264–272

    Article  Google Scholar 

  • Raterron P, Wu Y, Weidner DJ et al (2004) Low-temperature olivine rheology at high pressure. Phys Earth Planet Int 145:149–159

    Article  Google Scholar 

  • Roedder E (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am Mineral 50:1746–1782

    Google Scholar 

  • Ross JV, Ave Lallemant HG, Carter NL (1979) Activation volume for creep in the upper mantle. Science 203:261–263

    Article  Google Scholar 

  • Sapienza G, Hilton DR, Scribano V (2005) Helium isotopes in peridotite mineral phases from Hyblean Plateau xenoliths (southeastern Sicily, Italy). Chem Geol 219:115–129

    Article  Google Scholar 

  • Sawaguchi T, Ishii K (2003) Three-dimensional numerical modeling of lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites. J Struct Geol 25:1425–1444

    Article  Google Scholar 

  • Saxena SK, Chatterjee N, Fei Y et al (1993) Thermodynamic data on oxides and silicates. Springer, New York

    Google Scholar 

  • Schwab RG, Freisleben B (1988) Fluid CO2 inclusions in olivine and pyroxene and their behaviour under high pressure and temperature conditions. Bull Mineral 111:297–306

    Google Scholar 

  • Ulmer P, Stalder R (2001) The Mg(Fe)SiO3 orthoenstatite-clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples. Am Mineral 86:1267–1274

    Google Scholar 

  • Utsumi W, Funakoshi K, Urakawa S et al (1998) SPring-8 beamlines for high pressure science with multi-anvil apparatus. Rev High Pressure Sci Technol 7:1484–1486

    Google Scholar 

  • Weidner DJ (1998) Rheological studies at high pressure. In: Hemley RJ, Mao HK (eds) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. Mineralogical Society of America, Washington, DC, pp 493–524

  • Weidner DJ, Wang Y, Vaughan MT (1994) Yield strength at high pressure and temperature. Geophys Res Lett 21:753–756

    Article  Google Scholar 

  • Weidner DJ, Wang Y, Chen G et al (1998) Rheology measurements at high pressure and temperature. Geophys Monogr 101:473–482

    Google Scholar 

  • Weidner DJ, Chen J, Xu Y et al (2001) Subduction zone rheology. Phys Earth Planet Int 127:67–81

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Yamamoto J, Kagi H, Kaneoka I et al (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro Raman spectroscopy. Earth Planet Sci Lett 198:511–519

    Article  Google Scholar 

  • Yamamoto J, Kaneoka I, Nakai S et al (2004) Evidence for subduction-related components in the subcontinental mantle from low 3He/4He and 40Ar/36Ar ratio in mantle xenoliths from Far Eastern Russia. Chem Geol 207:237–259

    Article  Google Scholar 

  • Yamamoto J, Kagi H, Kawakami Y et al (2007) Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantle- and crust-derived rocks. Earth Planet Sci Lett 253:369–377

    Article  Google Scholar 

  • Zhang J, Wang L, Weidner DJ et al (2002) The strength of moissanite. Am Mineral 87:1005–1008

    Google Scholar 

Download references

Acknowledgments

Drs. Matsui M., Nishihara Y. and an anonymous reviewer provided thoughtful comments to improve the manuscript. We appreciate Y. Higo, F. Kurio, T. Sanehira, Y. Sueda and colleagues at Ehime University for their help in creating the pressure cell. This study was supported by a Grant-in-aid for the twenty-first Century COE Program for KAGI21 (Kyoto University, G3) and for Frontiers in Fundamental Chemistry, and by Grants-in-aid for Scientific Research (Nos. 13554018, 14654096, 15340190, 18740344 and 19GS0205) from the Japan Society for the Promotion of Science (JSPS) and JSPS Postdoctoral Fellowships for Research Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, J., Ando, Ji., Kagi, H. et al. In situ strength measurements on natural upper-mantle minerals. Phys Chem Minerals 35, 249–257 (2008). https://doi.org/10.1007/s00269-008-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-008-0218-6

Keywords

Navigation