Physics and Chemistry of Minerals

, Volume 35, Issue 1, pp 49–58 | Cite as

A neutron diffraction study of alkali cation migration in montmorillonites

  • D. GournisEmail author
  • A. Lappas
  • M. A. Karakassides
  • D. Többens
  • A. Moukarika
Original Paper


Neutron powder diffraction measurements on lithium and cesium saturated montmorillonite samples before and after heat treatment at 300°C are studied, in order to undertake a complete refinement of crystal structure and unravel the migration mechanism for the interlayer cations of Li or Cs. Rietveld analysis of the corresponding diffraction patterns finds that montmorillonite crystallizes in the C2/m space group with unit cell dimensions consistent with the size of the specific interlayer cation. We show that thermal treatment affects the two types of samples in a different way. This is with respect to their unit cell dimensions and the migration of Li from the 2b to the 2c clay lattice site, in constrast to the Cs positioning which remains effectively unchanged.


Montmorillonite Neutron diffraction Lithium migration Infrared reflectance Hoffman Klemen effect 



The experiments at BENSC in Berlin were supported by the European Commission under the Access to Research Infrastructures Action of Human Potential Programme (contract: HPRI-CT-1999-00020).


  1. Alvero R, Alba MD, Castro MA, Trillo JM (1994) Reversible migration of lithium in montmorillonite. J Phys Chem 98:7848–7853CrossRefGoogle Scholar
  2. Bacon GE (1975) Neutron diffraction, 3rd edn. Oxford University Press, LondonGoogle Scholar
  3. Baker DE, Senft JP (1995) Copper. In: Alloway BJ (ed) Heavy metal in soils. Blackie Academic & Professional, London, pp 179–205Google Scholar
  4. Calvet R, ProstR (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner 19:175–186CrossRefGoogle Scholar
  5. Ebina T, Iwasaki T, Chatterjee A (1999) XPS and DFT study on the migration of lithium in montmorillonite. Clay Sci 10:569–581Google Scholar
  6. Gates WP, Komadel P, Madejová J, Bujdák J, Stucki JW, Kirkpatrick RJ (2000) Electronic properties of reduced-charge montmorillonites. Appl Clay Sci 16:257–271CrossRefGoogle Scholar
  7. Gournis D (1998) Effects of γ-irradiation on clays and clay-organic complexes. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, p 57Google Scholar
  8. Heller-Kallai L, Mosser C (1995) Migration of Cu ions in Cu montmorillonites heated with and without alkali halides. Clays Clay Miner 43:738–743CrossRefGoogle Scholar
  9. Hoffmann V, Klemen R (1950) Verlust den Austauschfahiqkeit von Lithiumionen aan Bentonit durch Erhitzung. Z Anorg Allg Chem 262:95–99Google Scholar
  10. Hrobáriková J, Madejová J, Komadel P (2001) Effect of heating temperature on Li-fixation, layer charge and properties of fine fractions of bentonites. J Mater Chem 11:1452–1457CrossRefGoogle Scholar
  11. Jaynes WF, Bigham JM (1987) Charge reduction, octahedral charge and lithium retention in heated Li-saturated smectites. Clays Clay Miner 35:440–448CrossRefGoogle Scholar
  12. Karakassides MA, Petridis D, Gournis D (1997) Infrared reflectance study of thermally treated Li- and Cs-montmorillonites. Clays Clay Miner 45:649–658CrossRefGoogle Scholar
  13. Karakassides MA, Gournis D, Petridis D (1999a) An infrared reflectance study of Si–O vibrations in thermally treated alkali-saturated montmorillonites. Clay Miner 34:429–438CrossRefGoogle Scholar
  14. Karakassides MA, Madejová J, Arvaiová B, Bourlinos A, Petridis D, Komadel P (1999b) Location of Li(I), Cu(II) and Cd(II) in heated montmorillonite: evidence from specular reflectance infrared and electron spin resonance spectroscopies. J Mater Chem 9:1553–1558CrossRefGoogle Scholar
  15. Karakassides MA, Gournis D, Simopoulos T, Petridis D (2000) Mössbauer and infrared study of heat-treated nontronite. Clays Clay Miner 48:68–74CrossRefGoogle Scholar
  16. Komadel P, Bujdák J, Madejová J, Sucha V, Elsass F (1996) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Miner 31:333–345CrossRefGoogle Scholar
  17. Komadel P, Madejová J, Bujdák J (2005) Preparation and properties of reduced-charge smectites: a review. Clays Clay Miner 53:313–334CrossRefGoogle Scholar
  18. Konta J (1995) Clay and man: clay raw materials in the service of man. Appl Clay Sci 10:275–335CrossRefGoogle Scholar
  19. Luca V, Cardile CM (1988) Thermally induced cation migration in Na and Li montmorillonites. Phys Chem Miner 16:98–103CrossRefGoogle Scholar
  20. MacEwan DMC (1951) The montmorrillonite minerals: X-ray identification and structure of the clay minerals, Mineralogical Society of Great Britain Monograph, p 86Google Scholar
  21. Madejová J, Arvaiová B, Komadel P (1999) FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochim Acta A 55:2467–2476CrossRefGoogle Scholar
  22. Madejová J, Bujdák J, Petit S, Komadel P (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region. Clay Miner 35:739–751CrossRefGoogle Scholar
  23. Madejová J, Pálková H, Komadel P (2006) Behaviour of Li+ and Cu2+ in heated montmorillonite: Evidence from far-, mid-, and near-IR regions. Vib Spectrosc 40:80–88CrossRefGoogle Scholar
  24. Madsen F (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Miner 33:109–129CrossRefGoogle Scholar
  25. Méring J (1946) The hydration of montmorillonite. Trans Faraday Soc 42B:205–219CrossRefGoogle Scholar
  26. Pinnavaia TJ (1983) Interacalated clay catalysts. Science 220:365–371CrossRefGoogle Scholar
  27. Pitteloud C, Powell DH, Fischer HE (2001) The hydration structure of the Ni2+ ion intercalated in montmorillonite: a neutron diffraction with isotopic substitution study. Phys Chem Chem Phys 3:5567–5574CrossRefGoogle Scholar
  28. Powell DH, Fischer HE, Skipper NT (1998a) The structure of interlayer water in Li-montmorillonite studied by neutron diffraction with isotopic substitution. J Phys Chem B 102:10899–10905CrossRefGoogle Scholar
  29. Powell DH, Tongkhao K, Kennedy SJ, Slade PG (1998b) Interlayer water structure in Na- and Li-montmorillonite clays. Physica B 241–243:387–389Google Scholar
  30. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  31. Rodriguez- Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69CrossRefGoogle Scholar
  32. Sposito G, Prost R, Gaultier JP (1983) Infrared spectroscopic study of absorbed water in reduced charged Na/Li-montmorillonites. Clays Clay Miner 31:9–16CrossRefGoogle Scholar
  33. Srasra E, Bergaya F, Fripiat JJ (1994) Infrared-spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays Clay Miner 42:237–241CrossRefGoogle Scholar
  34. Stackhouse S, Coveney PV (2002) Study of thermally treated lithium montmorillonite by Ab initio methods. J Phys Chem B 106:12470–12477CrossRefGoogle Scholar
  35. Tettenhorst R (1962) Cation migration in montmorillonites. Am Miner 47:769–773Google Scholar
  36. Theng BKG (1974) The chemistry of clay-organic reactions. Wiley, BristolGoogle Scholar
  37. Theng BKG, Hayashi S, Soma M, Seyama H (1997) Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of lithium migration in montmorillonite. Clays Clay Miner 45:718–723CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Gournis
    • 1
    Email author
  • A. Lappas
    • 2
  • M. A. Karakassides
    • 1
  • D. Többens
    • 3
  • A. Moukarika
    • 4
  1. 1.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  2. 2.Institute of Electronic Structure and LaserFoundation for Research and Technology-HellasHeraklionGreece
  3. 3.Berlin Neutron Scattering CenterHahn-Meitner-InstitütBerlinGermany
  4. 4.Department of PhysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations