Advertisement

Copper valence, structural separation and lattice dynamics in tennantite (fahlore): NMR, NQR and SQUID studies

  • R. R. GainovEmail author
  • A. V. Dooglav
  • I. N. Pen’kov
  • I. R. Mukhamedshin
  • A. V. Savinkov
  • N. N. Mozgova
Original Paper

Abstract

Electronic and magnetic properties of tennantite subfamily of tetrahedrite-group minerals have been studied by copper nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and SQUID magnetometry methods. The temperature dependences of copper NQR frequencies and line-width, nuclear spin-lattice relaxation rate T 1 −1 and nuclear spin-echo decay rate T 2 −1 in tennantite samples in the temperature range 4.2–210 K is evidence of the presence of field fluctuations caused by electronic spins hopping between copper CuS3 positions via S2 bridging atom. The analysis of copper NQR data at low temperatures points to the magnetic phase transition near 65 K. The magnetic susceptibility in the range 2–300 K shows a Curie–Weiss behavior, which is mainly determined by Fe2+ paramagnetic substituting ions.

Keywords

NMR NQR SQUID Tennantite Tetrahedrite Magnetic phase transition 

Notes

Acknowledgments

We thank Dr. Orlinskii S.B. (Kazan State University, Russian Federation) for the valuable discussions. We thank N.V. Trubkin (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science) for determination of the chemical composition of minerals. We thank Prof. Pattrick R.A.D. (University of Manchester, Great Britain) for permission to reproduce the original picture in this paper. This work was partly supported by the Russian Foundation for Basic Research under Grant 06-02-17197а.

References

  1. Abdullin RS, Kal’chev VP, Pen’kov IN (1987) Investigation of copper minerals by NQR: crystallochemistry, electronic structure, lattice dynamics. Phys Chem Minerals 14:258–263CrossRefGoogle Scholar
  2. Abragam AA (1961) The principles of nuclear magnetism. Clarendon, OxfordGoogle Scholar
  3. Anashkin VN, Kalinina TA, Matukhin VL, Pen’kov IN, Safin IA (1994) NQR spectra of 63,65Cu in coexisting covelline (CuS) and geerite (Cu1,6S). Proc Russ Miner Soc (Zapiski Vseros Miner Obsch) 5:59–63Google Scholar
  4. Apih T, Mikac U, Dolinšek J, Seliger J, Blinc R (2000) Unique 1-q and 3-q incommensurate phases in proustite: 75As NQR line-shape and spin-lattice relaxation study. Phys Rev B 61:1003–1013CrossRefGoogle Scholar
  5. Bastow TJ, Campbell ID, Whitfield HJ (1980) 63Cu NQR in copper compounds. Solid State Commun 33:399–401CrossRefGoogle Scholar
  6. Bayer H (1951) Zur theorie der spin-gitterrelaxation in molekülkristallen. Z für Physik (now Z für Physik A: Hadrons and Nuclei) 130:227–238 (in German)Google Scholar
  7. Begaev BB, Dooglav AV, Kal’chev VP, Krjukov EV, Mukhamedshin IR, Pen’kov IN (2002) Electronic structure and lattice dynamics of domeykite Cu3As according to nuclear quadrupole resonance of 75As and 63,65Cu. Appl Magn Reson 22:577–588Google Scholar
  8. Belov NV, Pobedimskaya EA (1969) Covelline (klockmannite), chalcocite (acanthite, stromeyerite, bornite), fahlerz. Sov Phys Crystallogr 13:843–847(English translation from Kristallografiya (1968) 13:969–975)Google Scholar
  9. Belov NV, Godovikov AA, Bakakin VV (1982) Essays on theoretical mineralogy (in Russian). Nauka, MoscowGoogle Scholar
  10. Blundell S (2004) Magnetism in condensed matter. Oxford University Press, New YorkGoogle Scholar
  11. Bullett DW (1987) Application of atomic-orbital methods to the structure and properties of complex transition-metal compounds. Phys Chem Minerals 14:485–491CrossRefGoogle Scholar
  12. Buznik VM (1981) Nuclear resonance in ionic crystals (in Russian). Nauka, NovosibirskGoogle Scholar
  13. Charnock JM, Garner CD, Pattrick RAD, Vaughan DJ (1989) Coordination sites of metals in tetrahedrite minerals determined by EXAFS. J Solid State Chem 82:279–289CrossRefGoogle Scholar
  14. Chou FC, Borsa F, Cho JH, Johnston DC, Lascialfari A, Torgeson DR, Ziolo J (1993) Magnetic phase diagram of lightly doped La2-xSrxCuO4 from 139La nuclear quadrupole resonance. Phys Rev Lett 71:2323–2326CrossRefGoogle Scholar
  15. Das TP, Hahn EL (1958) Nuclear quadrupole resonance spectroscopy. Academic Press, New YorkGoogle Scholar
  16. Di Benedetto F, Bernardini GP, Borrini D, Emiliani C, Cipriani C, Danti C, Caneschi A, Gatteschi D, Romanelli M (2002) Crystal chemistry of tetrahedrite solid-solution: EPR and magnetic investigations. Can Minerals 40:837–847CrossRefGoogle Scholar
  17. Di Benedetto F, Bernardini GP, Cipriani C, Emiliani C, Gatteschi D, Romanelli M (2005) The distribution of Cu(II) and the magnetic properties of the synthetic analogue of tetrahedrite: Cu12Sb4S13. Phys Chem Minerals 32:155–164CrossRefGoogle Scholar
  18. Dillon KB (2005) Nuclear quadrupole resonance spectroscopy. In: Davidson G (ed) Spectroscopic properties of inorganic and organometallic compounds (specialist periodical reports), vol 37, sect 1. The Royal Society of Chemistry, LondonGoogle Scholar
  19. Eremin MV, Nikitin SI, Prosvirnin SY (2002) Low-lying state of trinuclear mixed-valence cluster: [Fe3S4]0. Appl Magn Reson 23:97–104CrossRefGoogle Scholar
  20. Fukushima E, Roeder SB, (1981) Experimental pulse NMR. Addison-Wesley, MassachusettsGoogle Scholar
  21. Fujiyama S, Takigawa M, Horii S (2003) Charge freezing in the zigzag chain PrBa2Cu4O8 cuprate. Phys Rev Lett 90:147004.1–147004.4CrossRefGoogle Scholar
  22. Gainov RR, Dooglav AV, Pen’kov IN (2006) Evidence for low-temperature internal dynamics in Cu12As4S13 according to copper NQR and nuclear relaxation. Solid State Commun 140:544–548CrossRefGoogle Scholar
  23. Grechishkin VS (1973) Nuclear quadrupole interactions in solids (in Russian). Nauka, MoscowGoogle Scholar
  24. Itoh Y, Hayashi A, Yamagata H, Matsumura M, Koga K, Ueda Y (1996) Cu NMR and NQR study of CuS. J Phys Soc Jpn (letters) 65:1953–1956Google Scholar
  25. Johnson NE, Craig JR, Rimstidt JD (1986) Compositional trends in tetrahedrites. Can Mineral 24:385–397Google Scholar
  26. Kal’chev VP, Abdullin RS, Pen’kov IN (1979) Nuclear magnetic resonance of 63,65Cu in local fields in antiferromagnet CuFeS2. Sov Phys Solid State 21:1801–1803 (English translation from Fiz Tverd Tela (1979) 21:3132–3134)Google Scholar
  27. Korringa J (1950) Nuclear magnetic relaxation and resonance line shifts in metals. Physica 16:601–610CrossRefGoogle Scholar
  28. Kushida T, Benedek GB, Bloembergen N (1956) Dependence of the pure quadrupole resonance frequency on pressure and temperature. Phys Rev 104:1364–1377CrossRefGoogle Scholar
  29. Lima-de-Faria J (1999) The packing analogues of sodalite, tetrahedrite and related structures. Croat Chem Acta 72:705–710Google Scholar
  30. Makovicky E, Skinner BJ (1979) Studies of the sulfo salts of copper. VII. Crystal structures of the exsolution products Cu12.3Sb4S13 and Cu13.8Sb4S13 of unsubstituted synthetic tetrahedrite. Can Mineral 17:619–634Google Scholar
  31. Makovicky E, Forcher K, Lottermoser W, Amthauer G (1990) The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineral Petrol 43:73–81CrossRefGoogle Scholar
  32. Makovicky E, Karup-Møller S (1994) Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I: Substitution by Fe, Zn, Co, Ni, Mn, Cr, V and Pb. Unit-cell parameter changes on substitution and the structural role of Cu2+. Neues Jahrb Mineral Abh 167:89–123Google Scholar
  33. Maske S, Skinner BJ (1971) Studies of the sulfo salts of copper. I. Phases and phase relations in the system Cu–As–S. Econ Geol 66:901–918CrossRefGoogle Scholar
  34. Mozgova NN, Tsepin AI (1983) Fahlore (chemical composition and properties; in Russian). Nauka, MoscowGoogle Scholar
  35. Pattrick RAD, Hall AJ (1983) Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites. Mineral Mag 47:441–451CrossRefGoogle Scholar
  36. Pattrick RAD, van der Laan G, Vaughan DJ, Henderson CMB (1993) Oxidation state and electronic configuration determination of copper in tetrahedrite group minerals by L-edge X-ray absorption spectroscopy. Phys Chem Minerals 20:395–401CrossRefGoogle Scholar
  37. Pauling L, Neumann EW (1934) The crystal structure of binnite, (Cu,Fe)12As4S13 and the chemical composition and structure of the tetrahedrite group. Z Kristallogr 88:54–62Google Scholar
  38. Pearce CI, Pattrick RAD, Vaughan DJ (2006) Electrical and magnetic properties of sulfides. Rev Mineral Geochem 61:127–180CrossRefGoogle Scholar
  39. Pen’kov IN, Safin IA (1967) Application of NQR-method in investigation of minerals. Intern Geol Rev 9:793–801CrossRefGoogle Scholar
  40. Pen’kov IN, Abdullin RS, Nenasheva SN (1974) NQR spectra and peculiarities of constitution of smithite—AgAsS2. Dokl Akad Nauk SSSR (geol section) 219:437–440 (in Russian)Google Scholar
  41. Peterson RC, Miller I (1986) Crystal structure and cation distribution in freibergite and tetrahedrite. Mineral Mag 50:717–721CrossRefGoogle Scholar
  42. Pfitzner A, Evain M, Petricek V (1997) Cu12Sb4S13: a temperature-dependent structure investigation. Acta Crystallogr B 53:337–345CrossRefGoogle Scholar
  43. Povarennykh AS (1972) Crystal chemical classification of minerals. Plenum, New York (English translation of Russian original edition, Publishing House Naukova Dumka, Kiev, 1966)Google Scholar
  44. Rubinstein M, Taylor PC (1974) Nuclear quadrupole resonance in amorphous and crystalline As2S3. Phys Rev B 9:4258–4276CrossRefGoogle Scholar
  45. Semin GK, Babushkina TA, Yakobson GG (1975) Nuclear quadrupole resonance in chemistry. Wiley, New York (English translation of Russian original edition, Publishing House Khimiya, Leningrad, 1972)Google Scholar
  46. Slichter CP (1996) Principles of magnetic resonance (3rd enriched and updated edition). Springer, BerlinGoogle Scholar
  47. Suits BH, Slichter CP (1984) Nuclear quadrupole resonance study of the 145 K charge density wave transition in NbSe3. Phys Rev B 29:41–51CrossRefGoogle Scholar
  48. Tatsuka K, Morimoto N (1973) Composition variation and polymorphism of tetrahedrite in the Cu–Sb–S system below 400°C. Am Mineral 58:425–434Google Scholar
  49. Tse D, Hartmann SR (1968) Nuclear spin-lattice relaxation via paramagnetic centers without spin diffusion. Phys Rev Lett 21:511–514CrossRefGoogle Scholar
  50. Weiss A (1995) The combination of X-ray diffraction and nuclear quadrupole resonance studies of crystals. Acta Crystallogr B 54:523–539CrossRefGoogle Scholar
  51. Winter J (1971) Magnetic resonance in metals. Clarendon, OxfordGoogle Scholar
  52. Wuench BJ, Takeuchi Y, Novacky W (1966) Refinement of the crystal structure of binnite, Cu12As4S13. Z Kristallogr 123:1–20Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. R. Gainov
    • 1
    Email author
  • A. V. Dooglav
    • 1
  • I. N. Pen’kov
    • 2
  • I. R. Mukhamedshin
    • 1
    • 3
  • A. V. Savinkov
    • 1
    • 3
  • N. N. Mozgova
    • 4
  1. 1.Department of Physics, MRS LaboratoryKazan State UniversityKazanRussia
  2. 2.Department of GeologyKazan State UniversityKazanRussia
  3. 3.Graduate School of Science and Technology, Faculty of ScienceKanazawa UniversityKakuma-machiJapan
  4. 4.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (Russian Academy of Science)MoscowRussia

Personalised recommendations