Physics and Chemistry of Minerals

, Volume 35, Issue 1, pp 25–35 | Cite as

The influence of pressure on the structure and dynamics of hydrogen bonds in zoisite and clinozoisite

  • Björn WinklerEmail author
  • Julian D. Gale
  • Keith Refson
  • Dan J. Wilson
  • Victor Milman
Original Paper


Density functional theory calculations have been used to study the pressure-induced changes of the hydrogen bond of Fe-free orthozoisite and clinozoisite and the concomitant shifts of the OH-stretching frequencies. Two independent parameter-free lattice dynamical calculations have been employed. One was based on a plane-wave basis set in conjunction with norm-conserving pseudopotentials and a density functional perturbation theory approach, while the other used a localised basis set and a finite displacement algorithm for the lattice dynamical calculations. Both models confirm the unusually large pressure-induced red-shift found experimentally (−33.89 cm−1/GPa) in orthozoisite, while the pressure-induced shifts in clinozoisite are much smaller (−5 to −9 cm−1/GPa). The atomistic model calculations show that in orthozoisite the nearly linear O–H⋯O arrangement is compressed by about 8% on a pressure increase to 10 GPa, while concomitantly the O–H distance is significantly elongated (by 2.5% at 10 GPa). In clinozoisite, the O–H⋯O arrangement is kinked \((\angle\hbox{OHO} = 166^{\circ})\) at ambient conditions and remains kinked at high pressures, while the O-H distance is elongated by only 0.5% at 10 GPa. The current calculations confirm that correlations between the distances and dynamics of hydrogen bonds, which have been established at ambient conditions, cannot be used to infer hydrogen positions at high pressures.


Zoisite High pressure Hydrogen bond Lattice dynamics 



This research was supported by Deutsche Forschungsgemeinschaft (Project Wi-1232), which is a part of the HydroMin collaborative research project with the EuroMinScI EUROCORES, funded by the ESF with funds from the EU sixth framework programme under contract no. ERAS-CT-2003-980409. JDG would like to thank the Government of Western Australia for funding under the Premier’s Research Fellowship program and iVEC/APAC for the provision of computer time. DJW was funded through the DTI (UK) MaterialsGrid consortium. CASTEP calculations were performed on CCLRC’s e-Science facility.


  1. Accelrys Inc (2007) Materials Studio 4.1.
  2. Auzende A, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miners 31:269–277CrossRefGoogle Scholar
  3. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  4. Bradbury SE, Williams Q (2003) Contrasting bonding behaviour of two hydroxyl-bearing metamorphic minerals under pressure: clinozoisite and topaz. Am Mineral 88:1460–1470Google Scholar
  5. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallographie 220:567–570CrossRefGoogle Scholar
  6. Comodi P, Zanazzi PF (1997) The pressure behaviour of clinozoisite and zoisite: an X-ray diffraction study. Am Mineral 82:61–68Google Scholar
  7. Dollase WA (1968) Refinement and comparison of the structures of zoisite and clinozoiste. Am Mineral 53:1882–1898Google Scholar
  8. Dubinin A, Winkler B, Knorr K, Milman V (2004) Lattice dynamics and elastic properties of PbF2 and BaF2 from quantum mechanical calculations. Eur Phys J B 39:27–33CrossRefGoogle Scholar
  9. Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, LondonGoogle Scholar
  10. Fleming S, Rohl A (2005) GDIS: a visualization program for molecular and periodic systems. Z Kristallographie 220:580–584CrossRefGoogle Scholar
  11. Friedrich A, Wilson DJ, Haussühl E, Winkler B, Morgenroth W, Refson K, Milman V (2006) High-pressure properties of diaspore, AlO(OH). Phys Chem Miner. doi: 101007/s00269-006-0135-5
  12. Friedrich A, Haussühl E, Boehler R, Morgenroth W, Juarez-Arellano EA, Winkler B (2007) Single-crystal structure refinement of diaspore at 50 GPa. Am Mineral 92(10):1640–1644CrossRefGoogle Scholar
  13. Fuchs M, Bockstedte M, Pehlke E, Scheffler M (1998) Pseudopotential study of binding properties of solids within generalized gradient approximations: the role of core-valence exchange correlation. Phys Rev B 57:2134–2145CrossRefGoogle Scholar
  14. Gillan MJ (1988) The quantum simulation of hydrogen in metals. Philos Mag A 58:257–283CrossRefGoogle Scholar
  15. Gonze X (1997) First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate gradient algorithm. Phys Rev B55:10337–10354CrossRefGoogle Scholar
  16. Gottschalk M (2004) Thermodynamic properties of zoisite, clinozoisite and epidote. In: Liebscher A, Franz G (eds) Epidotes, no. 56 in Reviews in Mineralogy & Geochemistry Mineralogical Society of America, pp 83–124Google Scholar
  17. Junquera J, Paz O, Sanchez-Portal D, Artacho E (2001) Numerical atomic orbitals for linear-scaling calculations. Phys Rev B 64:235111CrossRefGoogle Scholar
  18. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651–1654CrossRefGoogle Scholar
  19. Koch-Müller M, Hofmeister AM, Fei Y, Liu Z (2002) High-pressure IR-spectra and the thermodynamic properties of chlorotoid. Am Mineral 87:609–622Google Scholar
  20. Koch-Müller M, Dera P, Fei Y, Reno B, Sobolev N, Hauri E, Wysoczanski R (2003) OH in natural coesite. Am Mineral 88:1436–1445Google Scholar
  21. Kruger MB, Williamns Q, Jeanloz R (1989) Vibrational spectra of Mg(OH)2 and Ca(OH)2 under pressure. J Chem Phys 91:5910–5915CrossRefGoogle Scholar
  22. Kvik A, Pluth JJ, Richardson JW Jr, Smith JV (1988) The ferric ion distribution and hydrogen bonding in epidote: a neutron diffraction study at 15 K. Acta Crystallogr B 44:351–355CrossRefGoogle Scholar
  23. Lager GA, Marshall WG, Liu X, Downs RT (2005) Re-examination of the hydrogarnet structure at high pressure using neutron powder diffraction and infrared spectroscopy. Am Mineral 90:639–644CrossRefGoogle Scholar
  24. Langer K, Lattard D (1980) Identification of a low energy OH-valence vibration in zoisite. Am Mineral 65:779–783Google Scholar
  25. Libowitzky E (1999) Correlation of the O–H stretching frequencies and O–H⋯O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059Google Scholar
  26. Liebscher A (2004) Spectroscopy of epidote minerals. In: Liebscher A, Franz G (eds) Epidotes, reviews in mineralogy, vol 56, Chap 3. Mineralogical Society of America, Washington, pp 125–170Google Scholar
  27. Liebscher A, Franz G (eds) (2004) Epidotes, reviews in mineralogy, vol 56. Mineralogical Society of America, WashingtonGoogle Scholar
  28. Liebscher A, Gottschalk M, Franz G (2002) The substitution Fe3+-Al and the isosymmetric displacive phase transition in synthetic zoisite: a powder X-ray and infrared spectroscopic study. Am Mineral 87:909–921Google Scholar
  29. McIntyre GJ, Mélési L, Guthrie M, Tulk CA, Xu J, Parise JB (2005) One picture says it all—high-pressure cells for neutron Laue diffraction on VIVALDI. J Phys Condens Matter 17:S3017–S3024CrossRefGoogle Scholar
  30. Milman V, Winkler B (2001) Prediction of hydrogen positions in complex structures. Z Kristallogr 216(2):99–104CrossRefGoogle Scholar
  31. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  32. Moreno J, Soler JM (1992) Optimal meshes for integrals in real-space and reciprocal space unit cells. Phys Rev B45:13891–13898CrossRefGoogle Scholar
  33. Parise JB, Leinenweber K, Weidner DJ, Tan K, Von Dreek RB (1994) Pressure-induce H bonding: neutron diffraction study of brucite, Mg(OD)2 to 9.3 GPa. Am Mineral 79:193–196Google Scholar
  34. Pascale F, Tosoni S, Zicovich-Wilson C, Ugliengo P, Orlando R, Dovesi R (2004) Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chem Phys Lett 396:308–315CrossRefGoogle Scholar
  35. Payne MC, Teter MP, Allan DC, Arias TA, Johannopoulos JD (1992) Iterative minimisation techniques for ab initio total energy calculations—molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097CrossRefGoogle Scholar
  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  37. Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227–1230CrossRefGoogle Scholar
  38. Refson K, Tulip PR, Clark SJ (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B 73:155114CrossRefGoogle Scholar
  39. Rossman GR (1988) Vibrational spectroscopy of hydrous components. In: C HF (ed) Spectroscopic methods in mineralogy and geology, reviews in mineralogy, vol 18. Mineralogical Society of America, Washington, pp 193–206Google Scholar
  40. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744CrossRefGoogle Scholar
  41. Shinoda K, Nagai T, Aikawa N (2000) Pressure-dependent anharmonic coefficient of OH in portlandite by NIR-IR spectroscopy with DAC. J Mineral Petrol Sci 95:65–70CrossRefGoogle Scholar
  42. Smith JV, Pluth JJ, Richardson JW Jr, Kvik A (1987) Neutron diffraction study of zoisite at 15 k and X-ray study at room temperature. Z Kristallogr 179:305–321CrossRefGoogle Scholar
  43. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  44. Szalay V, Kovács L, Wölecke M, Libowitzky E (2002) Stretching potential and equilibrium length of the OH bond in solids. Chem Phys Lett 354:56–61CrossRefGoogle Scholar
  45. Tosoni S, Pascale F, Ugliengo P, Orlando R, Saunders VR, Dovesi R (2005) Quantum mechanical calculation of the oh vibrational frequency in crystalline solids. Mol Phys 103:2549–2558CrossRefGoogle Scholar
  46. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B43:1993–2006CrossRefGoogle Scholar
  47. Tse JS (2004) Computational high pressure science. In: Katrusiak A, McMillan P (eds) High-pressure Crystallography, NATO Science Series, vol 140. Kluwer, Dordrecht, pp 179–198Google Scholar
  48. Winkler B (1988) OH-Schwingungen in Zoisit: Hochdruck- und polarisierte Einkristallspektren im IR. PhD thesis, TU BerlinGoogle Scholar
  49. Winkler B (1999) An introduction to ‘Computational Crystallography’. Z Kristallogr 214:506–527CrossRefGoogle Scholar
  50. Winkler B (2004) Introduction to high pressure computational crystallography. In: Katrusiak A, McMillan P (eds) High-pressure Crystallography, NATO Science Series, vol 140. Kluwer, Dordrecht, pp 159–178Google Scholar
  51. Winkler B, Langer K, Johannsen PG (1989) The influence of pressure on the OH valence vibration of zoisite. Phys Chem Miner 16:668–671CrossRefGoogle Scholar
  52. Winkler B, Hytha M, Pickard C, Milman V, Warren M (2001a) Theoretical investigation of bonding in diaspore. Eur J Mineral 13:343–349CrossRefGoogle Scholar
  53. Winkler B, Milman V, Nobes RH (2001b) A theoretical investigation of the relative stabilities of Fe-free clinozoisite and orthozoisite. Phys Chem Miner 28:471–474CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Björn Winkler
    • 1
    Email author
  • Julian D. Gale
    • 2
  • Keith Refson
    • 3
  • Dan J. Wilson
    • 1
  • Victor Milman
    • 4
  1. 1.Institut für GeowissenschaftenUniversität FrankfurtFrankfurt a.M.Germany
  2. 2.Nanochemistry Research InstituteCurtin University of TechnologyPerthWestern Australia
  3. 3.STFC Rutherford Appleton LaboratoryOxonEngland
  4. 4.Accelrys Inc.CambridgeUK

Personalised recommendations