Skip to main content

Advertisement

Log in

The influence of pressure on the structure and dynamics of hydrogen bonds in zoisite and clinozoisite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Density functional theory calculations have been used to study the pressure-induced changes of the hydrogen bond of Fe-free orthozoisite and clinozoisite and the concomitant shifts of the OH-stretching frequencies. Two independent parameter-free lattice dynamical calculations have been employed. One was based on a plane-wave basis set in conjunction with norm-conserving pseudopotentials and a density functional perturbation theory approach, while the other used a localised basis set and a finite displacement algorithm for the lattice dynamical calculations. Both models confirm the unusually large pressure-induced red-shift found experimentally (−33.89 cm−1/GPa) in orthozoisite, while the pressure-induced shifts in clinozoisite are much smaller (−5 to −9 cm−1/GPa). The atomistic model calculations show that in orthozoisite the nearly linear O–H⋯O arrangement is compressed by about 8% on a pressure increase to 10 GPa, while concomitantly the O–H distance is significantly elongated (by 2.5% at 10 GPa). In clinozoisite, the O–H⋯O arrangement is kinked \((\angle\hbox{OHO} = 166^{\circ})\) at ambient conditions and remains kinked at high pressures, while the O-H distance is elongated by only 0.5% at 10 GPa. The current calculations confirm that correlations between the distances and dynamics of hydrogen bonds, which have been established at ambient conditions, cannot be used to infer hydrogen positions at high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Accelrys Inc (2007) Materials Studio 4.1. http://www.accelrys.com/products/mstudio/

  • Auzende A, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miners 31:269–277

    Article  Google Scholar 

  • Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  Google Scholar 

  • Bradbury SE, Williams Q (2003) Contrasting bonding behaviour of two hydroxyl-bearing metamorphic minerals under pressure: clinozoisite and topaz. Am Mineral 88:1460–1470

    Google Scholar 

  • Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallographie 220:567–570

    Article  Google Scholar 

  • Comodi P, Zanazzi PF (1997) The pressure behaviour of clinozoisite and zoisite: an X-ray diffraction study. Am Mineral 82:61–68

    Google Scholar 

  • Dollase WA (1968) Refinement and comparison of the structures of zoisite and clinozoiste. Am Mineral 53:1882–1898

    Google Scholar 

  • Dubinin A, Winkler B, Knorr K, Milman V (2004) Lattice dynamics and elastic properties of PbF2 and BaF2 from quantum mechanical calculations. Eur Phys J B 39:27–33

    Article  Google Scholar 

  • Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Fleming S, Rohl A (2005) GDIS: a visualization program for molecular and periodic systems. Z Kristallographie 220:580–584

    Article  Google Scholar 

  • Friedrich A, Wilson DJ, Haussühl E, Winkler B, Morgenroth W, Refson K, Milman V (2006) High-pressure properties of diaspore, AlO(OH). Phys Chem Miner. doi:101007/s00269-006-0135-5

  • Friedrich A, Haussühl E, Boehler R, Morgenroth W, Juarez-Arellano EA, Winkler B (2007) Single-crystal structure refinement of diaspore at 50 GPa. Am Mineral 92(10):1640–1644

    Article  Google Scholar 

  • Fuchs M, Bockstedte M, Pehlke E, Scheffler M (1998) Pseudopotential study of binding properties of solids within generalized gradient approximations: the role of core-valence exchange correlation. Phys Rev B 57:2134–2145

    Article  Google Scholar 

  • Gillan MJ (1988) The quantum simulation of hydrogen in metals. Philos Mag A 58:257–283

    Article  Google Scholar 

  • Gonze X (1997) First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate gradient algorithm. Phys Rev B55:10337–10354

    Article  Google Scholar 

  • Gottschalk M (2004) Thermodynamic properties of zoisite, clinozoisite and epidote. In: Liebscher A, Franz G (eds) Epidotes, no. 56 in Reviews in Mineralogy & Geochemistry Mineralogical Society of America, pp 83–124

  • Junquera J, Paz O, Sanchez-Portal D, Artacho E (2001) Numerical atomic orbitals for linear-scaling calculations. Phys Rev B 64:235111

    Article  Google Scholar 

  • King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651–1654

    Article  Google Scholar 

  • Koch-Müller M, Hofmeister AM, Fei Y, Liu Z (2002) High-pressure IR-spectra and the thermodynamic properties of chlorotoid. Am Mineral 87:609–622

    Google Scholar 

  • Koch-Müller M, Dera P, Fei Y, Reno B, Sobolev N, Hauri E, Wysoczanski R (2003) OH in natural coesite. Am Mineral 88:1436–1445

    Google Scholar 

  • Kruger MB, Williamns Q, Jeanloz R (1989) Vibrational spectra of Mg(OH)2 and Ca(OH)2 under pressure. J Chem Phys 91:5910–5915

    Article  Google Scholar 

  • Kvik A, Pluth JJ, Richardson JW Jr, Smith JV (1988) The ferric ion distribution and hydrogen bonding in epidote: a neutron diffraction study at 15 K. Acta Crystallogr B 44:351–355

    Article  Google Scholar 

  • Lager GA, Marshall WG, Liu X, Downs RT (2005) Re-examination of the hydrogarnet structure at high pressure using neutron powder diffraction and infrared spectroscopy. Am Mineral 90:639–644

    Article  Google Scholar 

  • Langer K, Lattard D (1980) Identification of a low energy OH-valence vibration in zoisite. Am Mineral 65:779–783

    Google Scholar 

  • Libowitzky E (1999) Correlation of the O–H stretching frequencies and O–H⋯O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  • Liebscher A (2004) Spectroscopy of epidote minerals. In: Liebscher A, Franz G (eds) Epidotes, reviews in mineralogy, vol 56, Chap 3. Mineralogical Society of America, Washington, pp 125–170

  • Liebscher A, Franz G (eds) (2004) Epidotes, reviews in mineralogy, vol 56. Mineralogical Society of America, Washington

  • Liebscher A, Gottschalk M, Franz G (2002) The substitution Fe3+-Al and the isosymmetric displacive phase transition in synthetic zoisite: a powder X-ray and infrared spectroscopic study. Am Mineral 87:909–921

    Google Scholar 

  • McIntyre GJ, Mélési L, Guthrie M, Tulk CA, Xu J, Parise JB (2005) One picture says it all—high-pressure cells for neutron Laue diffraction on VIVALDI. J Phys Condens Matter 17:S3017–S3024

    Article  Google Scholar 

  • Milman V, Winkler B (2001) Prediction of hydrogen positions in complex structures. Z Kristallogr 216(2):99–104

    Article  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  • Moreno J, Soler JM (1992) Optimal meshes for integrals in real-space and reciprocal space unit cells. Phys Rev B45:13891–13898

    Article  Google Scholar 

  • Parise JB, Leinenweber K, Weidner DJ, Tan K, Von Dreek RB (1994) Pressure-induce H bonding: neutron diffraction study of brucite, Mg(OD)2 to 9.3 GPa. Am Mineral 79:193–196

    Google Scholar 

  • Pascale F, Tosoni S, Zicovich-Wilson C, Ugliengo P, Orlando R, Dovesi R (2004) Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chem Phys Lett 396:308–315

    Article  Google Scholar 

  • Payne MC, Teter MP, Allan DC, Arias TA, Johannopoulos JD (1992) Iterative minimisation techniques for ab initio total energy calculations—molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD (1990) Optimized pseudopotentials. Phys Rev B 41:1227–1230

    Article  Google Scholar 

  • Refson K, Tulip PR, Clark SJ (2006) Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys Rev B 73:155114

    Article  Google Scholar 

  • Rossman GR (1988) Vibrational spectroscopy of hydrous components. In: C HF (ed) Spectroscopic methods in mineralogy and geology, reviews in mineralogy, vol 18. Mineralogical Society of America, Washington, pp 193–206

  • Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  Google Scholar 

  • Shinoda K, Nagai T, Aikawa N (2000) Pressure-dependent anharmonic coefficient of OH in portlandite by NIR-IR spectroscopy with DAC. J Mineral Petrol Sci 95:65–70

    Article  Google Scholar 

  • Smith JV, Pluth JJ, Richardson JW Jr, Kvik A (1987) Neutron diffraction study of zoisite at 15 k and X-ray study at room temperature. Z Kristallogr 179:305–321

    Article  Google Scholar 

  • Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  Google Scholar 

  • Szalay V, Kovács L, Wölecke M, Libowitzky E (2002) Stretching potential and equilibrium length of the OH bond in solids. Chem Phys Lett 354:56–61

    Article  Google Scholar 

  • Tosoni S, Pascale F, Ugliengo P, Orlando R, Saunders VR, Dovesi R (2005) Quantum mechanical calculation of the oh vibrational frequency in crystalline solids. Mol Phys 103:2549–2558

    Article  Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B43:1993–2006

    Article  Google Scholar 

  • Tse JS (2004) Computational high pressure science. In: Katrusiak A, McMillan P (eds) High-pressure Crystallography, NATO Science Series, vol 140. Kluwer, Dordrecht, pp 179–198

  • Winkler B (1988) OH-Schwingungen in Zoisit: Hochdruck- und polarisierte Einkristallspektren im IR. PhD thesis, TU Berlin

  • Winkler B (1999) An introduction to ‘Computational Crystallography’. Z Kristallogr 214:506–527

    Article  Google Scholar 

  • Winkler B (2004) Introduction to high pressure computational crystallography. In: Katrusiak A, McMillan P (eds) High-pressure Crystallography, NATO Science Series, vol 140. Kluwer, Dordrecht, pp 159–178

  • Winkler B, Langer K, Johannsen PG (1989) The influence of pressure on the OH valence vibration of zoisite. Phys Chem Miner 16:668–671

    Article  Google Scholar 

  • Winkler B, Hytha M, Pickard C, Milman V, Warren M (2001a) Theoretical investigation of bonding in diaspore. Eur J Mineral 13:343–349

    Article  Google Scholar 

  • Winkler B, Milman V, Nobes RH (2001b) A theoretical investigation of the relative stabilities of Fe-free clinozoisite and orthozoisite. Phys Chem Miner 28:471–474

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Deutsche Forschungsgemeinschaft (Project Wi-1232), which is a part of the HydroMin collaborative research project with the EuroMinScI EUROCORES, funded by the ESF with funds from the EU sixth framework programme under contract no. ERAS-CT-2003-980409. JDG would like to thank the Government of Western Australia for funding under the Premier’s Research Fellowship program and iVEC/APAC for the provision of computer time. DJW was funded through the DTI (UK) MaterialsGrid consortium. CASTEP calculations were performed on CCLRC’s e-Science facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, B., Gale, J.D., Refson, K. et al. The influence of pressure on the structure and dynamics of hydrogen bonds in zoisite and clinozoisite. Phys Chem Minerals 35, 25–35 (2008). https://doi.org/10.1007/s00269-007-0195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0195-1

Keywords

Navigation