Physics and Chemistry of Minerals

, Volume 35, Issue 1, pp 1–9 | Cite as

Temperature-jump induced cation exchange kinetics in (Co0.1Mg0.9)2SiO4 olivine: an in situ optical spectroscopic study

  • Jianmin ShiEmail author
  • Stefan G. Ebbinghaus
  • Klaus Dieter Becker
Original Paper


In the olivine crystal structure, cations are distributed over two inequivalent octahedral sites, M1 and M2. Kinetics of cation exchange between the two octahedral sites in (Co0.1Mg0.9)2SiO4 single crystal have been studied in the temperature range from 600 to 800°C by monitoring the time evolution of the absorbance of Co2+ ions in M1 or M2 sites using optical spectroscopy after rapid temperature jumps. It was found from such temperature-jump induced relaxation experiments that with increasing temperature the absorbance of Co2+ ions in the M1 site decreases while that in the M2 site increases. This indicates a tendency of Co2+ cations to populate the M2 site with increasing temperatures and vice versa. The experimental relaxation data can be modeled using a triple exponential equation based on theoretical analysis. Activation energies of 221 ± 4 and 213 ± 10 kJ/mol were derived from relaxation experiments on the M2 site and M1 site, respectively, for the cation exchange processes in (Co0.1Mg0.9)2SiO4 olivine. Implications for cation diffusion at low temperatures are discussed.


Kinetics Olivine Cation distribution Optical spectroscopy Temperature jump Diffusion 



The authors would like to thank Dr. S. Kipp, M. Schrader, S. Dlugocz and A. Tiefnig for their help during this work. Thanks are also due to Prof. P. G. Jones’s group for performing single crystal diffraction experiments and Dr. J. Koepke, University of Hanover, for electron microprobe analysis. Financial support from Deutsche Forschungsgemeinschaft (DFG) is greatly acknowledged.


  1. Akamatsu T, Kumazawa M (1993) Kinetics of intracrystalline cation redistribution in olivine and its implication. Phys Chem Miner 19:423–430Google Scholar
  2. Bäckermann J, Becker KD (1998) The mechanism of cation equilibration in nickel aluminate spinel, NiAlO4. Z Phys Chem 206:26–31Google Scholar
  3. Becker KD, Rau F (1987) High-temperature ligand field spectra in spinels: cation disorder and cation kinetics in NiAl2O4. Ber Bunsenges Phys Chem 91:1279–1282Google Scholar
  4. Becker KD, Bäckermann J (1995) Kinetics of order-disorder processes in spinels. Phase Trans 55:181–197CrossRefGoogle Scholar
  5. Boström D (1989) Single crystal diffraction studies of synthetic (Co,Mg)-olivine solid solutions. Acta Chem Scand 43:121–127Google Scholar
  6. Brown WE, (1980) Olivines and silicate spinels. In: Ribbe PH (ed) Orthosilicates. Rev Mineral 5:275–365Google Scholar
  7. Buening DK, Buseck PR (1973) Fe–Mg lattice diffusion in olivine. J Geophys Res 78:6852–6862CrossRefGoogle Scholar
  8. Coogan LA, Hain A, Stahl S, Chakraborty S (2006) Experimental determination of diffusion coefficient of calcium in olivine between 900°C and 1500°C. Geochim Cosmochim Acta 69:3683–3694CrossRefGoogle Scholar
  9. Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and fO2. Phys Chem Miner 21:489–500CrossRefGoogle Scholar
  10. Chakraborty S (1997) Rates and mechanism of Fe-Mg interdiffusion in olivine at 980–1300°C. J Geophys Res B6 102:12317–12331CrossRefGoogle Scholar
  11. Figgis BN, Hitchman MA (2000) Ligand field theory and its applications, chap 8. Wiley-VCH, New YorkGoogle Scholar
  12. Garsche M (1994) Spektroskopische und strukturelle Untersuchungen zur Intrakristallinen Ni–Mg-Verteilung in Olivinen, (Mg1−xNix)2SiO4. PhD Thesis, Technische Universitaet BerlinGoogle Scholar
  13. Ghose S, Wan C (1974) Strong site preprence of Co2+ in olivine Co1.1Mg0.90SiO4. Contr Mineral Petrol 47:131–140CrossRefGoogle Scholar
  14. Henderson CMB, Rederfern SAT, Smith RI, Knight KS, Charnock JM (2001) Composition and temperature dependence of cation ordering in Ni–Mg olivine solid solutions: a time-of-flight neutron powder diffraction and EXAFS study. Am Mineral 86:1170–1187Google Scholar
  15. Hermeling J, Schmalzried H (1984) Tracerdiffusion of the Fe-cations in olivine (Fex Mg1−x)2SiO4(III). Phys Chem Miner 11:161–166CrossRefGoogle Scholar
  16. Ito M, Yurimoto H, Morioka M, Nagasawa H (1999) Co2+ and Ni2+ diffusion in olivine determined by secondary ion mass spectroscopy. Phys Chem Miner 26:435–431CrossRefGoogle Scholar
  17. Ito M, Ganguly J (2006) Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochim Cosmochim Acta 70:799–809CrossRefGoogle Scholar
  18. Miyake M, Nakamura H, Kojima H, Marumo F (1987) Cation ordering in Co-Mg olivine solid solution series. Am Mineral 72:594–598Google Scholar
  19. Morioka M (1980) Cation diffusion in olivine—I. Cobalt and magesium. Geochim Cosmochim Acta 44:759–762CrossRefGoogle Scholar
  20. Morozov M, Brinkmann Ch, Lottermoser W, Tippelt G, Amthauer G, Kroll H (2005) Octrahedral cation partitioning in Mg, Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5Fe0.5)2SiO4(Fa50). Eur J Mineral 17:495–500CrossRefGoogle Scholar
  21. Müller-Sommer M, Hock R, Kirfel A (1997) Rietveld refinement study of the cation distribution in (Co, Mg)-olivine. Phys Chem Miner 24:17–23CrossRefGoogle Scholar
  22. Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Miner 10:27–37CrossRefGoogle Scholar
  23. Petry C, Chakraborty S, Palm H (2004) Experimental determination of Ni diffusion coefficients and their dependence on temperature, composition, oxygen fugacity and crystallographic orientation. Geochim Cosmochim Acta 68:4179–4188CrossRefGoogle Scholar
  24. Rinaldi R, Gatta GD, Artioli KS, Knight KS, Geiger CA (2005) Crystal chemistry, cation ordering and thermoelastic behavior of CoMgSiO4 olivine at high temperature as studied by in situ neutron powder diffraction. Phys Chem Miner 36:655–664CrossRefGoogle Scholar
  25. Schmitz-DuMont O, Friebel C (1967) Farbe und Konsitution bei anorganischen Feststoffen, 15. Mitteilungen: Die Lichtabsorption des zweiwertigen Cobalts in Silikaten vom Olivintypus. Mh Chem 4:1583–1602Google Scholar
  26. Schwier G, Dieckmann R, Schmalzried H (1973) Punktfehlstellen in Oxidmischphasen (I) Fehlstellenthermodynamik der Mischphasen (CoxMg1−x)O und (CoxMg1−x)2SiO4. Ber Bunsenges Phys Chem 77:402–408Google Scholar
  27. Stocker RL, Smith DM (1978) Effect of enstatite activity and oxygen partial pressure on the point-defect chemistry of olivine. Phys Earth Planet Int 16:145–156CrossRefGoogle Scholar
  28. Taran MN, Koch-Müller M (2006) Octahedral cation ordering in Mg, Fe2+-olivine: an optical absorption spectroscopic study. Phys Chem Miner 33:511–518CrossRefGoogle Scholar
  29. Taran MN, Rossman GR (2001) Optical spectra of Co2+ in three synthetic silicate minerals. Am Mineral 86:889–891Google Scholar
  30. Tsai TL, Diekmann R (1997) Point defects and transport of matter and charge in olivines, (FexMg1−x)2SiO4. Mater Sci Forum 239(24):399–402CrossRefGoogle Scholar
  31. Tsai TL, Diekmann R (2002) Variation of the oxygen content and point defects in olivines, (FexMg1−x)2SiO4. Phys Chem Miner 29:680–694CrossRefGoogle Scholar
  32. Ullrich K, Langer K, Becker KD (2001) Temperature dependence of the polarized electronic absorption spectra of olivines. Part I—fayalite. Phy Chem Miner 29:409–419CrossRefGoogle Scholar
  33. Ullrich K, Ott O, Langer K, Becker KD (2004) Temperature dependence of the polarized electronic absorption spectra of olivines. Part II—Cobalt-containing olivines. Phys Chem Miner 31:247–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jianmin Shi
    • 1
    Email author
  • Stefan G. Ebbinghaus
    • 2
  • Klaus Dieter Becker
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryBraunschweig University of TechnologyBraunschweigGermany
  2. 2.Solid State Chemistry, Institute of PhysicsUniversity of AugsburgAugsburgGermany

Personalised recommendations