Skip to main content
Log in

TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A continuous flow method, by a combination of thermal conversion elemental analyzer (TC/EA) with isotope ratio mass spectrometry (MS), is presented for determination of both H isotope composition and H2O concentration of garnet from eclogite. Together with biotite NBS-30, the garnet was tested by preheating mineral grains at different temperatures. Preheating at 90°C for 12 h was found to be capable of eliminating adsorption water on sample surface. This results in constant δD values and total H2O contents for the garnet, with weighted means of −93 ± 2‰ and 522 ± 11 ppm (wt), respectively. The garnet that was preheated at 350°C for 4 h also gave constant δD values of −86 ± 6‰ and H2O contents of 281 ± 13 ppm (wt). The latter result for the H2O contents agrees with the H2O contents 271 ± 58 ppm (wt) measured by Fourier transform infrared spectroscopy for quantitative analysis of structural hydroxyl in the same garnet. Stepwise-heating TC/EA-MS analyses for the garnet show that the molecular H2O are depleted in D relative to the structural OH and has higher mobility than the structural OH. Therefore, the TC/EA-MS method can be used not only for quantitative determination of both H isotope composition and H2O concentration of hydrous and anhydrous minerals, but also for the concentration of structural hydroxyl after high-T dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) Water content in mantle garnets. Geology 12:720–723

    Article  Google Scholar 

  • Amthauer G, Rossman GR (1998) The hydrous component in andradite garnet. Am Mineral 83:835–840

    Google Scholar 

  • Behrens H, Zhang Y, Leschik M, Wiedenbeck M, Heide G, Frischat GH (2007) Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts. Earth Planet Sci Lett 254:69–76

    Article  Google Scholar 

  • Bell DR, Ihinger PD (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta 64:2109–2118

    Article  Google Scholar 

  • Bell DR, Rossman GR (1992a) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Bell DR, Rossman GR (1992b) The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib Mineral Petrol 111:161–178

    Article  Google Scholar 

  • Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of OH in garnet and pyroxenes. Am Mineral 80:465–474

    Google Scholar 

  • Bell DR, Rossman GR, Moore RO (2004) Abundance and partitioning of OG in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J Petrol 45:1539–1564

    Article  Google Scholar 

  • Beran A, Langer K, Andrut M (1993) Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenoliths. Mineral Petrol 48:257–268

    Article  Google Scholar 

  • Bilke S, Mosandl A (2002) Measurements by gas chromatography/pyrolysis/mass spectrometry: fundamental conditions in 2H/1H isotope ratio analysis. Rapid Commun Mass Spectrom 16:468–472

    Article  Google Scholar 

  • Blanchard M, Ingrin J (2004) Hydrogen diffusion in Dora Maira pyrope. Phys Chem Miner 31:593–605

    Article  Google Scholar 

  • Burgoyne TW, Hayes JM (1998) Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Anal Chem 70:5136–5141

    Article  Google Scholar 

  • Chen RX, Zheng YF, Gong B, Zhao ZF, Gao TS, Chen B, Wu YB (2007) Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen. Geochim Cosmochim Acta 71:2299–2325

    Article  Google Scholar 

  • Clunie JS, Goodman JF, Ogden CP (1966) Extinction coefficient of water at 2.93u and water content of black foam films. Nature 209:1192–1193

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. 2nd edn, Oxford University Press, Oxford

    Google Scholar 

  • Doremus RH (2004) Transport of oxygen in silicate glasses. J Non-Cryst Solids 349:242–247

    Article  Google Scholar 

  • Eiler JM, Kitchen N (2001) Hydrogen-isotope analysis of nanomole (picoliter) quantities of H2O. Geochim Cosmochim Acta 65:4467–4479

    Article  Google Scholar 

  • Faure K (2003) δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water? Econ Geol 98:657–660

    Article  Google Scholar 

  • Godin JP, Richelle M, Metairon S, Fay LB (2004) [2H/H] isotope ratio analyses of [2H5] cholesterol using high-temperature conversion elemental analyzer isotope-ratio mass spectrometer: determination of cholesterol absorption in normocholesterolemic volunteers. Rapid Commun Mass Spectrom 18:325–330

    Article  Google Scholar 

  • Gong B, Zheng YF, Chen RX (2007a) An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun Mass Spectrom 21:1386–1392

    Article  Google Scholar 

  • Gong B, Zheng YF, Wu YB, Zhao ZF, Gao TS, Tang J, Chen RX, Fu B (2007b) Geochronology and stable isotope geochemistry of UHP metamorphic rocks at Taohang in the Sulu Orogen, east-central China. Int Geol Rev 49:259–286

    Google Scholar 

  • Grant K, Gleeson SA, Roberts S (2003) The high-temperature behavior of defect hydrogen species in quartz: implications for hydrogen isotope studies. Am Mineral 88:262–270

    Google Scholar 

  • Hauri E, Wang JH, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114

    Article  Google Scholar 

  • Hilkert AW, Douthitt CB, Schluter HJ, Brand WA (1999) Isotope ratio monitoring gas chromatography/mass spectrometer of D/H by high temperature conversion isotope ratio mass spectrometer. Rapid Commun Mass Spectrom 13:1226–1230

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Rev Miner Geochem 62:291–320

    Article  Google Scholar 

  • Inoue T, Weidner TD, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4. Earth Planet Sci Lett 160:107–113

    Article  Google Scholar 

  • Johnson EA, Rossman GR (2004) A survey of hydrous species and concentrations in igneous feldspars. Am Mineral 89:586–600

    Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Karato S, Jung H (1998) Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett 157:193–207

    Article  Google Scholar 

  • Katayama I, Nakashima S (2003) Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle. Am Mineral 88:229–234

    Google Scholar 

  • Katayama I, Nakashima S, Yurimoto H (2006) Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86:245–259

    Article  Google Scholar 

  • Koga K, Hauri E, Hirschmann M, Bell D (2003) Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst 4(2):1019, doi:10.1029/2002GC000378

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the a, b, and c phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Kurka A, Blanchard M, Ingrin J (2005) Kinetics of hydrogen extraction and deuteration in grossular. Mineral Mag 69:359–371

    Article  Google Scholar 

  • Langer K, Robarick E, Sobolev NV, Shatsky VS, Wang W (1993) Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan: indications for OH, H2O, and FeTi charge transfer. Eur J Mineral 5:1091–1100

    Google Scholar 

  • Libowitzky Z, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115

    Google Scholar 

  • Lu R, Keppler H (1997) Water solubility in pyrope to 100 kbar. Contrib Mineral Petrol 129:35–42

    Article  Google Scholar 

  • Matsyuk SS, Langer K, Hosch A (1998) Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib Mineral Petrol 132:163–179

    Article  Google Scholar 

  • Nakashima S, Matayoshi H, Yuko T, Michibayashi K, Masuda T, Kuroki N, Yamagishi H, Ito Y, Nakamora A (1995) Infrared microspectroscopy analysis of water distribution in deformed and metamorphosed rocks. Tectonophys 245:263–276

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral 105:20–29

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chloride stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Rossman GR (1996) Studies of OH in nominally anhydrous minerals. Phys Chem Minerals 23:299–304

    Article  Google Scholar 

  • Rossman GR, Aines RD (1991) The hydrous components in garnets: grossular–hydrogrossular. Am Mineral 76:1153–1164

    Google Scholar 

  • Rossman GR, Beran A, Langer K (1989) The hydrous component of pyrope from the Dora Maira Massif, Western Alps. Eur J Mineral 1:151–154

    Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178:197–210

    Article  Google Scholar 

  • Sheng YM, Xia QK, Yang XZ, Hao YT (2007) H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim Cosmochim Acta 71:2079–2103

    Article  Google Scholar 

  • Simon K (2001) Does δD from fluid inclusions in quartz reflect the origin hydrothermal fluid? Chem Geol 177:483–495

    Article  Google Scholar 

  • Smyth JR, Bell DR, Rossman GR (1991) Hydroxyl in upper mantle clinopyroxenes. Nature 35:732–735

    Article  Google Scholar 

  • Snyder GA, Taylor LA, Clayton RN, Mayeda P, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am Mineral 80:799–809

    Google Scholar 

  • Su W, You ZD, Cong BL, Ye K, Zhong ZQ (2002) Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology 30:611–614

    Article  Google Scholar 

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Vennemann TW, O’Neil JR (1993) A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chem Geol 103:227–234

    Article  Google Scholar 

  • Wang LP, Zhang YX, Essene E (1996) Diffusion of the hydrous component in pyrope. Am Mineral 81:706–718

    Google Scholar 

  • Withers AC, Wood BJ, Carroll MR (1998) The OH content of pyrope at high pressure. Chem Geol 147:161–171

    Article  Google Scholar 

  • Xia QK, Sheng YM, Yang XZ, Yu HM (2005) Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China. Chem Geol 224:237–246

    Article  Google Scholar 

  • Xia QK, Yang XZ, Deloule E, Sheng YM, Hao YT (2006) Water in the lower crustal granulite xenoliths from Nushan, SE China. J Geophys Res 111:B11202, doi:10.1029/2006JB 004296

    Article  Google Scholar 

  • Xiao YL, Hoefs J, van den Kerkhof AM, Fiebig J, Zheng YF (2000) Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib Mineral Petrol 139:1–16

    Article  Google Scholar 

  • Xiao YL, Hoefs J, van den Kerkhof AM, Simon K, Fiebig J, Zheng YF (2002) Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol 43:1505–1527

    Article  Google Scholar 

  • Zhang YX, Stolper EM, Wasserburg GJ (1991) Diffusion of a multi-species component and its role in oxygen and water transport in silicates. Earth Planet Sci Lett 103:228–240

    Article  Google Scholar 

  • Zhang JF, Jin ZM, Green HW, Jin SY (2001) Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains. Chin Sci Bull 46:592–595

    Article  Google Scholar 

  • Zhang JF, Green II HW, Bozhilov K, Jin ZM (2004) Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature 428:633–636

    Article  Google Scholar 

  • Zhao ZF, Zheng YF (2007) Diffusion compensation for argon, hydrogen, lead, and strontium in minerals: Empirical relationships to crystal chemistry. Am Mineral 92: 289–308

    Article  Google Scholar 

  • Zhao ZF, Chen B, Zheng YF, Chen RX, Wu YB (2007) Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss transition from the Chinese Continental Scientific Drilling core samples. J Metamorph Geol 25:165–186

    Article  Google Scholar 

  • Zheng YF, Fu B (1998) Estimation of oxygen diffusivity from anion porosity in minerals. Geochem J 32:71–89

    Google Scholar 

  • Zheng YF, Fu B, Xiao YL, Li YL, Gong B (1999) Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos 46:677–693

    Article  Google Scholar 

  • Zheng YF, Wang ZR, Li SG, Zhao ZF (2002) Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm–Nd chronometer. Geochim Cosmochim Acta 66:625–634

    Article  Google Scholar 

  • Zheng YF, Zhao Z-F, Li SG, Gong B (2003) Oxygen isotope equilibrium between ultrahigh-pressure metamorphic minerals and its constraints on Sm–Nd and Rb–Sr chronometers. Geol Soc Spec Publ 220:93–117

    Article  Google Scholar 

  • Zheng YF, Wu YB, Chen FK, Gong B, Li L, Zhao ZF (2004) Zircon U–Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochem Cosmochim Acta 68:4145–4165

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from the Natural Science Foundation of China (40573011) and the Chinese Academy of Sciences (kzcx2-yw-131). Thanks are due to Dr. Qunke Xia for his assistance with FTIR measurements. The manuscript has been greatly improved from comments by Tony Withers and one anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Fei Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, B., Zheng, YF. & Chen, RX. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Minerals 34, 687–698 (2007). https://doi.org/10.1007/s00269-007-0184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0184-4

Keywords

Navigation