Physics and Chemistry of Minerals

, Volume 34, Issue 5, pp 287–294 | Cite as

Low temperature magnetism and Mössbauer spectroscopy study from natural goethite

  • T. S. Berquó
  • R. A. L. Imbernon
  • A. Blot
  • D. R. Franco
  • M. C. M. Toledo
  • C. S. M. Partiti
Original Paper


In this work a magnetic characterization was made of natural goethite from Burkina Faso, Africa, by using low temperature magnetization curves, hysteresis loops, Mössbauer spectroscopy at room temperature and 4.2 K, and AC susceptibility from 10 to 400 K. The samples are from two distinct geological sites that underwent different weathering processes. All measurements point to the occurrence of typical high coercivity goethite. Through Mössbauer spectroscopy sample BL44, from Gangaol, northeast Burkina Faso showed relaxation effects due to a wide distribution of grain size, including superparamagnetism threshold. AC susceptibility also supports this interpretation. The sample BL50 from Bonga in Burkina Faso is associated with lateritic Ni and in addition to goethite this sample also contained magnetite, as determined by Verwey transition in low temperature measurements as well as a small content of hematite identified by Mössbauer spectroscopy.


Goethite Gossans Magnetization AC susceptibility Mössbauer spectroscopy 



TSB thanks FAPESP (Fundação de Amaparo à Pesquisa do Estado de São Paulo) for support (grant 00/06066-3). This study was supported by National Science Foundation (NSF) grant EAR 0311869 from the Biogeosciences program. The Institute for Rock Magnetism (IRM) is funded by NSF and the W. M. Keck Foundation, the Earth Science Division of the US National Science Foundation and the University of Minnesota. This is IRM publication # 0507.


  1. Agudelo AC, Marco JF, Gancedo JR, Perez-Alcazar GA (2002) Fe-Mn-Al-C alloys: a study of their corrosion behavior in SO2 environments. Hyp Interact 139:141–152CrossRefGoogle Scholar
  2. Barrero CA, Vandenberghe RE, De Grave E, da Costa MG (1996) A qualitative analysis of the Mössbauer spectra of aluminous goethites based on existing models. In: Ortalli I (ed) Proceedings of the international conference on the applications of the Mössbauer effect (ICAME-95). Italian Physical Society, Italy, pp 717–720Google Scholar
  3. Barrero CA, Betancur JD, Greneche JM, Goya GF, Berquó TS (2006) Magnetism in non-stoichiometric goethite of varying total water content and surface area. Geophys J Int 164:331–339CrossRefGoogle Scholar
  4. Blot A (2002) Signification des ferruginisations des formations néoprotérozoïques du Nord-Burkina Faso (Afrique de l’Ouest). C R Geosci 334:909–915CrossRefGoogle Scholar
  5. Blot A (2004) Caractérisation des chapeaux de fer en milieu latéritique cuirassé. C R Geosci 336:1473–1480CrossRefGoogle Scholar
  6. Brand RA (1987) Improving the validity of hyperfine field distributions from metallic alloys. Part I: unpolarized source. Nucl Instrum Methods B 28:398–405CrossRefGoogle Scholar
  7. Bocquet S, Kennedy SJ (1992) The Néel temperature of fine particle goethite. J Magn Magn Mat 109:260–264CrossRefGoogle Scholar
  8. Bocquet S, Pollard RJ, Cashion JD (1992) Dynamic magnetic phenomena in fine-particle goethite. Phys Rev B 46:11657–11664CrossRefGoogle Scholar
  9. Coey JMD, Barry A, Brotto J-M, Rakoto H, Brennan S, Mussel WN, Collomb A, Fruchart D (1995) Spin flop in goethite. J Phys: Condens Matter 7:759–768CrossRefGoogle Scholar
  10. Cornell RM, Schwertmann U (1996) The Iron oxides—structure, properties, reactions, occurrence and uses. Weinhein, New YorkGoogle Scholar
  11. de Boer CB, Dekkers MJ (1998) Thermomagnetic behavior of haematite and goethite as a function of grain size in various non-saturating fields. Geophys J Int 133:541–552CrossRefGoogle Scholar
  12. De Grave E, Barrero CA, Costa GM, Vandenberghe RE, Van San E (2002) Mössbauer spectra of α- and γ-polymorphs of FeOOH and Fe2O3: effects of poor crystallinity and of Al-for-Fe substitution. Clay Miner 37:591–606CrossRefGoogle Scholar
  13. Dekkers MJ (1989a) Magnetic properties of natural goethite-I. Grain-size dependence of some low–and high-field related rock magnetic parameters, measured at room temperature. Geophys J Int 97:323–340CrossRefGoogle Scholar
  14. Dekkers MJ (1989b) Magnetic properties of natural goethite-II. TRM behavior during thermal and alternating demagnetization and low temperature. Geophys J Int 97:341–355CrossRefGoogle Scholar
  15. Dekkers MJ (1990) Magnetic properties of natural goethite-III. Magnetic behavior and properties of minerals originating from goethite dehydration during thermal demagnetization. Geophys J Int 103:233–250CrossRefGoogle Scholar
  16. Dekkers MJ, Rochette P (1992) Magnetic properties of chemical remanent magnetization in synthetic and natural goethite: prospects for a natural remanent magnetization/thermoremament magnetization ratio paleomagnetic stability test? J Geophys Res 97:17291–17307CrossRefGoogle Scholar
  17. Dunlop D, Ozdemir O (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, CambridgeGoogle Scholar
  18. Fitzpatrick RW (1988) Iron compounds as indicators of pedogenic processes: examples from the southern hemisphere, in Iron in soils and clay minerals. In: Stucki JW, Goodman BA, Schwertmann U (eds) D. Reidel Publishing Company, Dordrecht, Holland, pp 351–396Google Scholar
  19. Forsyth JB, Hedley IG, Johnson CE (1968) The magnetic struture and hyperfine field of goethite (α-FeOOH). J Phys C 1:179–188CrossRefGoogle Scholar
  20. Fysh SA, Clark PE (1982) Aluminous goethite: a Mössbauer study. Phys Chem Miner 8:180–187CrossRefGoogle Scholar
  21. Guyodo Y, Mostrom A, Penn RL, Banerjee SK (2003) From nanodots to nanorods: oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophys Res Lett 30:1512–1515CrossRefGoogle Scholar
  22. Imbernon RAL, Blot A, Oliveira SMB, Magat P (1999) Os chapéus de ferro associados ao depósito de Pb-Zn-Ag na região de Canoas, Adrianópolis, PR—Evolução geoquímica e mineralógica. Geochim Brasiliensis 13:145–161Google Scholar
  23. Kilcoyne SH, Ritter C (1997) The influence of Al on the magnetic properties of synthetic goethite. Physica B 234–236:620–621CrossRefGoogle Scholar
  24. Lavaud T (2002) Paléo-chapeaux de fer au sein des cuirasses latéritiques: exemple du gîte nickélifére de Bonga, Burkina Faso. Mémoire en vue de l’obtention du Diplome d’Estudes Supérieures Universitaires, Université Paul Sabatier—Toulouse III, FranceGoogle Scholar
  25. Lavaud T, Beziat D, Blot A, Debta P, Lompo M, Martin F, Ouangrawa M, Tollon F (2004) Paleo-gossans within the lateritic iron crust: example of the nickeliferous prospect of Bonga, Burkina Faso. J Afr Earth Sci 39:465–471CrossRefGoogle Scholar
  26. Marco JF, Gracia M, Gancedo JR, Martín-Luengo MA, Joseph G (2000) Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island. Corros Sci 42:753–771CrossRefGoogle Scholar
  27. Mathé P-E, Rochette P, Vandamme D, Fillion G (1999) Néel temperatures of synthetic substituted goethites and their rapid determination using low-field susceptibility curves. Geophys Res Lett 26:2125–2128CrossRefGoogle Scholar
  28. Murad E (1996) Magnetic properties of microcrystalline iron (III) oxides and related materials as reflected in their Mössbauer spectra. Phys Chem Miner 23:248–262CrossRefGoogle Scholar
  29. Murad E (1982) The characterization of goethite by Mössbauer spectroscopy. Am Mineral 67:1007–1011Google Scholar
  30. Murad E, Cashion J (2004) Mössbauer spectroscopy of environmental materials and their utilization. Kluwer, BostonGoogle Scholar
  31. Özdemir Ö, Dunlop DJ (1996) Thermoremanence and Néel temperature of goethite. Geophys Res Lett 23:921–924CrossRefGoogle Scholar
  32. Özdemir Ö, Moskowitz BM, Dunlop DJ (1993) The effect of oxidation on the Verwey transition in magnetite. Geophys Res Lett 20:1671–1674Google Scholar
  33. Parisot JC, Ventose V, Grandin G, Bourges F, Debat P, Tollon F, Millo L (1995) Dynamique de l’or et d’autres minéraux lourds dans un profil d’altération cuirassé du Burkina Faso, Afrique de l’Ouest. Intérêt pour l’interpretation de la mise en place des matériaux constituant les cuirasses de haut glacis. C R Acad Sci Paris 321:295–302Google Scholar
  34. Rochette P, Fillion G (1989) Field and temperature behavior of remanence in synthetic goethite: paleomagnetic implications. Geophys Res Lett 16:851–854Google Scholar
  35. Trivedi P, Axe L, Dyer J (2001) Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids Surf A 191:107–121CrossRefGoogle Scholar
  36. Trolard F, Bourrie G, Jeanroy E, Herbillon AJ, Martin H (1995) Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction. Geochim Cosmochim Acta 59:1285–1297CrossRefGoogle Scholar
  37. Vandenberghe RE, De Grave E, Landuydt C, Bowen LH (1990) Some aspects concerning the characterization of iron oxides and hydroxides insoils and clays. Hyp Interact 53:175–196CrossRefGoogle Scholar
  38. Vandenberghe RE, Barrero CA, Costa GM, Van San E, De Grave E (2000) Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art. Hyp Interact 126:247–259, Hyp Interact 53:175–196CrossRefGoogle Scholar
  39. Van der Woude F, Dekker AJ (1966) Mössbauer effect in α-FeOOH. Phys Stat Sol 13:181–193Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • T. S. Berquó
    • 1
    • 2
  • R. A. L. Imbernon
    • 3
  • A. Blot
    • 4
  • D. R. Franco
    • 1
  • M. C. M. Toledo
    • 5
  • C. S. M. Partiti
    • 1
  1. 1.Laboratório de Materiais Magnéticos, Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Institute for Rock Magnetism, Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Laboratório de Hidrogeoquímica, Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil
  4. 4.IRD—OrstomOuagadougouBurkina Faso
  5. 5.Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations