Physics and Chemistry of Minerals

, Volume 33, Issue 6, pp 426–434 | Cite as

Neutron irradiation and post-irradiation annealing of rutile (TiO2−x ): effect on hydrogen incorporation and optical absorption

  • Geoffrey David Bromiley
  • Andrei A. Shiryaev
Original Paper


Neutron irradiation and post-irradiation annealing under oxidising and reducing conditions have been used to investigate H incorporation in, and the optical properties of, reduced (TiO2−x ) rutile. Optical absorption in rutile is mainly due to a Ti3+ Ti4+ intervalence charge transfer effect. The main mechanism for H incorporation in rutile involves interstitial H not coupled to other defects, which has important implications for the rate of H diffusion, and possibly also on the electrical properties of rutile. Additional minor OH absorption bands in IR spectra indicate that a small amount of interstitial H is coupled to defects such as Ti3+ on the main octahedral site, and indicates that more than one H incorporation mechanism may operate. Concentration of oxygen vacancies has a controlling influence on the H affinity of rutile.


Hydrogen Rutile Spectroscopy Neutron irradiation Radiation defects 



This work was funded by the Bayersiches Geoinstitut visiting scientists program (to GDB) and by Alexander von Humboldt foundation (to AAS). The authors thank Dr. N. N. Dogadkin (Vernadsky Institute of Geochemistry) for performing neutron irradiation experiments. Hans Keppler is thanked for useful comments regarding H2 measurements. Comments by two anonymous reviewers greatly improved the quality of this paper.


  1. Aono M, Hasiguti R (1993) Interaction and ordering of lattice defects in oxygen-deficient rutile TiO2−x. Phys Rev B 48(17):12406–12414CrossRefGoogle Scholar
  2. van der Berg A, Gora L, Jansen J, Maschmeyer T (2003) Improvement of zeolite NaA nucleation sites on (001) rutile by means of UV radiation. Microporous Mesoporous Materials 66:303–309CrossRefGoogle Scholar
  3. Bromiley GD, Keppler H (2004) An experimental investigation of hydroxyl solubility in jadeite and Na-rich pyroxenes. Contrib Mineral Petrol 147:189–200CrossRefGoogle Scholar
  4. Bromiley GD, Hilaret N (2005) An investigation of hydrogen and minor element incorporation in synthetic rutile. Mineral Mag 69(3):345–358CrossRefGoogle Scholar
  5. Bromiley GD, Hilaret N, McCammon C (2004a) Solubility of hydrogen and ferric iron in rutile and TiO2 (II): Implications for phase assemblages during ultrahigh-pressure metamorphism and for the stability of silica polymorphs in the lower mantle. Geophys Res Lett 31:L04610CrossRefGoogle Scholar
  6. Bromiley GD, Keppler H, McCammon C, Bromiley F, Jacobsen S (2004b) Hydrogen solubility and speciation in natural, gem-quality chromian diopside. Am Mineral 89:941–949Google Scholar
  7. Buck EC (1995) The effects of electron irradiation of rutile. Rad Effects Defects Solids 133(2):141–152CrossRefGoogle Scholar
  8. Catlow C, James R, Mackrodt W, Stewart R (1982) Defect energies in α-Al2O3 and rutile TiO2. Phys Rev B 25(2):1006–1026CrossRefGoogle Scholar
  9. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(4–5):53–229CrossRefGoogle Scholar
  10. Gonzalez R, Chen Y (2002) Transport of hydrogenic species in crystalline oxides: radiation and electric-field-enhanced diffusion. J Phys Condensed Matter 14(45):R1143–R1173CrossRefGoogle Scholar
  11. Hammer V, Beran A (1991) Variations in the OH concentrations of rutile from different geological environments. Mineral Petrol 45:1–9CrossRefGoogle Scholar
  12. Henderson M (1999) A surface perspective on self-diffusion in rutile TiO2. Surf Sci 419:174–187CrossRefGoogle Scholar
  13. Kappers LO (1978) Point defects in particle-irradiated single crystals of tetragonal GeO2. Phys Rev B 17:4199–4206CrossRefGoogle Scholar
  14. Katayama I, Hirose K, Yurimoto H, Nakashima S (2003) Water solubility in majoritic garnet in subducting oceanic crust. Geophys Res Lett 30(22):2155CrossRefGoogle Scholar
  15. Khomenko V, Langer K, Rager H, Fett A (1998) Electronic absorption by Ti3+ ions and electronic delocalization in synthetic blue rutile. Phys Chem Mineral 25:338–346CrossRefGoogle Scholar
  16. Kingsbury PW, Ohlsen W, Johnson OW (1968) Defects in rutile III. Diffusion of interstitial ions. Phy Rev B 175:1099–1101CrossRefGoogle Scholar
  17. Kohn S, Brooker R, Frost D, Slesinger A, Wood B (2002) Ordering of hydroxyl defects in hydrous wadsleyite (beta-Mg2SiO4). Am Mineral 87(2–3):293–301Google Scholar
  18. Koudriachova M, de Leeuw S, Harrison N (2004) First-principles study of H intercalation in rutile TiO2. Phys Rev B 70:165421CrossRefGoogle Scholar
  19. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. In: Seitz F, Turnball D (eds) Solid state physics: advances and applications, vol 3. Academic, New York, pp 307–435Google Scholar
  20. Lager G, von Dreele R (1996) Neutron powder diffraction study of hydrogarnet to 9.0 GPa. Am Mineral 81(9–10):1097–1104Google Scholar
  21. Lehman C (1977) Interaction of radiation with solids and elementary defect production. In: Defects in crystalline solids, vol 10. North Holland Publishing Company, Amsterdam, 341 ppGoogle Scholar
  22. Lu T-C, Wu S-Y, Lin L-B, Zheng W-C (2001) Defects in the reduced rutile single crystal. Physica B 304:147–151CrossRefGoogle Scholar
  23. Lu T-C, Lin L-B, Wu S-Y, Chen J, Zhang Y-Y (2002a) Influence of neutron irradiation and its post-annealing on optical absorption of rutile. Nucl Instrum Methods Phys Res B 191:236–240CrossRefGoogle Scholar
  24. Lu T-C, Lin L-B, Wu S-Y, Xu X-C, Cheng G (2002b) Influence of proton implantation on optical absorption of rutile. Surf Coatings Technol 158–159:431–435CrossRefGoogle Scholar
  25. Moore D, Cherniak D, Watson E (1998) Oxygen diffusion in rutile from 750 to 1,000°C and 0.1 to 1,000 MPa. Am Mineral 83:700–711Google Scholar
  26. Schmidt BC, Holtz FM, Bény J-M (1998) Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy. J Non-Crystalline Solids 240:91–103CrossRefGoogle Scholar
  27. Swope R, Smyth J, Larson A (1995) H in rutile compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile. Am Mineral 80:448–453Google Scholar
  28. Thomas BS, Marks NA, Corrales LR, Devanathan R (2005) Threshold displacement energies in rutile TiO2: a molecular dynamics simulation study. Nucl Instrum Methods Phys Res B 239(3):191–201CrossRefGoogle Scholar
  29. Traylor J, Smith H, Nicklow R, Wilkinson M (1971) Lattice dynamics of rutile. Phys Rev B 3(10):3457–3472CrossRefGoogle Scholar
  30. Zapunnyy S, Sobolev A, Bogdanov A, Slutsky A, Dmitriev L, Kunin L (1989) An apparatus for high-temperature optical research with controlled oxygen fugacity. Geochim Int 26(2):120–128Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Geoffrey David Bromiley
    • 1
    • 2
  • Andrei A. Shiryaev
    • 3
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  3. 3.A.V. Shubnikov Institute of Crystallography RASMoscowRussia

Personalised recommendations