Skip to main content
Log in

Composition dependence of elasticity in aluminosilicate glasses

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The elastic properties of two types of aluminosilicate (basaltic and rhyolitic) glasses have been studied using both Brillouin and Raman spectroscopy at ambient conditions. It has been found that the elastic moduli of the basaltic glasses decrease with increasing SiO2 concentration. The shear moduli displayed the least dependence on SiO2 content. The bulk moduli of the basaltic glasses strongly depend on the sum of the Q 3 and Q 4 anionic units. Among the modifiers, iron cations showed the strongest effect on the elastic properties of the rhyolitic glasses. For the elastic moduli of rhyolitic glasses, the major effect of alkaline earth cations is on shear modulus; however, both iron and alkali cations showed stronger effects on bulk modulus and similar relative contribution between bulk and shear moduli (based on the equivalent M+ cation). The dependences of elastic moduli on bulk NBO/T observed in both types of glasses suggest that the elastic modulus of an aluminosilicate glass depends on the concentration of effective modifying cations rather than the apparent concentration of all non-network-forming cations. An analysis of data also indicated that the ideal molar mixing model is failed in prediction of the elastic properties of the present multicomponent glasses by using the known parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Askarpour V, Manghnani MH (1993) Elastic properties of diopside, anorthite, and grossular glasses and liquids: a Brillouin scattering study up to 1400 K. J Geophys Res 98B:17683–17689

    Article  Google Scholar 

  • Bansal NP, Doremus RH (1986) Handbook of glass properties. Academic, San Diego, 680 p

  • Bottinga Y, Weill D, Richet P (1982) Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochim Cosmochim Acta 46:909–919

    Article  Google Scholar 

  • Burkhard DJM (1997) Elastic properties of alkali silicate glasses with iron oxide: relation to glass structure. Solid State Commun 101:903–907

    Article  Google Scholar 

  • Calas G, Cormier L, Galoisy L, Jollivet P (2002) Structure-property relationships in multicomponent oxide glasses. C R Chim 5:831–843

    Google Scholar 

  • Domine F, Piriou B (1986) Raman spectroscopic study of the SiO2–Al2O3–K2O vitreous system: distribution of silica and second neighbors. Amer Mineral 71:38–50

    Google Scholar 

  • Doweidar H (1998) Density-structure correlations in Na2O–Al2O3–SiO2 glasses. J Non-Cryst Solids 240:55–65

    Article  Google Scholar 

  • Furukawa T, White WB (1979) Structure and crystallization of glasses in the Li2Si2O5–TiO2 system determined by Raman spectroscopy. Phys Chem Glasses 20:69–80

    Google Scholar 

  • Galeener FL (1979) Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B19:4292–4297

    Google Scholar 

  • Gavriliu G (2001) Effects of added oxide and thermal history on Young’s modulus of added oxide(s)–Na2O–SiO2 glass. Mater Lett 48:199–204

    Article  Google Scholar 

  • Inaba S, Fujino S, Morinaga K (1999) Young’s modulus and compositional parameters of oxide glasses. J Amer Ceram Soc 82:3501–3507

    Article  Google Scholar 

  • Iwamoto N, Tsunawaki Y, Fuji M, Hatfori T (1975) Raman spectra of K2O–SiO2 and K2O–SiO2–TiO2 glasses. J Non-Cryst Solids 18:303–306

    Article  Google Scholar 

  • Karlsson KH, Fröberg K (1987) Structural units in silicate glasses. Chem Geol 62:1–5

    Article  Google Scholar 

  • Knoche R, Dingwell DB, Webb SL (1995) Melt densities for leucogranites and granitic pegmatites: partial molar volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3. Geochim Cosmochim Acta 59:4645–4652

    Article  Google Scholar 

  • Konijnendijk WL, Stevelts JM (1976) Raman scattering measurements of silicate glasses and compounds. J Non-Cryst Solids 21:447–453

    Article  Google Scholar 

  • Kushiro I (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of liquidus boundaries involving olivine, pyroxene, and silica materials. Amer J Sci 275:411–431

    Article  Google Scholar 

  • Lange RA (1996) Temperature independent thermal expansivities of sodium aluminosilicate melts between 713 and 1835 K. Geochim Cosmochim Acta 60:4989–4996

    Article  Google Scholar 

  • Lange RA (1997) A revised model for the density and thermal expansivity of K2O–Na2O–CaO–MgO–Al2O3– SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib Mineral Petrol 130:1–11

    Article  Google Scholar 

  • Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO– Fe2O3–Al2O3 –TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946

    Article  Google Scholar 

  • Le Saoût G, Vaills Y, Luspin Y (2002) Effects of thermal history on mechanical properties of (PbO) x (ZnO)0.6-x (P2O5)0.4 glasses using Brillouin scattering. Solid State Commun 123:49–54

    Article  Google Scholar 

  • Li CC (2004) Effects of cation size and anionic structure on the elasticity of alkali and alkaline earth silicate glasses. MS Thesis, Institute of Materials and Mineral Resource Engineering, National Taipei University of Technology

  • Lin CC, Shen P, Chang HM, Yang YJ (2006) Composition dependent structure and elasticity of lithium silicate glasses: Effect of ZrO2 additive and the combination of alkali silicate glasses. J Eur Ceram Soc (in press)

  • Makishima A, Mackenzie JD (1973) Direct calculation of Young’s modulus of glass. J Non-Cryst Solids 12:35–45

    Article  Google Scholar 

  • McMillan P (1984) A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2. Amer Mineral 69:645–659

    Google Scholar 

  • McMillan PF, Wolf GM (1995) Vibrational spectroscopy of silicate liquids. In: Stebbins JF, MaMillan PF, Dingwell DB (eds) Structure, dynamics and properties of silicate melts. Mineralogical Society of America, Washington DC, pp 247–315

    Google Scholar 

  • McMillan P, Piriou B, Navrotsky A (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim Cosmochim Acta 46:2021–2037

    Article  Google Scholar 

  • Mysen BO (1987) Magmatic silicate melts: Relations between bulk composition, structure and properties. In: Mysen BO (ed) Magmatic processes: physicochemical principles. The Geochemical Society, Penn, pp 375–399

    Google Scholar 

  • Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam, 354 p

  • Mysen BO (2003) Physics and chemistry of silicate glasses and melts. Eur J Mineral 15:781–802

    Article  Google Scholar 

  • Mysen BO, Virgo D, Scarfe CM (1980a) Relations between the anionic structure and viscosity of silicate melts—a Raman spectroscopic study. Amer Mineral 65:690–710

    Google Scholar 

  • Mysen BO, Ryerson FJ, Virgo D (1980b) The influence of TiO2 on the structure and derivative properties of silicate melts. Amer Mineral 65:1150–1165

    Google Scholar 

  • Mysen BO, Ryerson FJ, Virgo D (1981a) The structural role of phosphorus in silicate melts. Amer Mineral 66:106–117

    Google Scholar 

  • Mysen BO, Virgo D, Kushiro I (1981b) The structural role of aluminum in silicate melts—a Raman spectroscopic study at 1 atmosphere. Amer Mineral 66:678–701

    Google Scholar 

  • Mysen BO, Finger L, Virgo D, Seifert FA (1982) Curve-fitting of Raman spectra of silicate glasses. Amer Mineral 67:686–695

    Google Scholar 

  • Navrotsky A, Peraudeau P, McMillan P, Coutoures JP (1982) A thermochemical study of glasses and crystals along the joins silica–calcium aluminate and silica–sodium aluminate. Geochim Cosmochim Acta 46:2039–2049

    Article  Google Scholar 

  • Poe BT, McMillan PF, Angell CA, Sato RK (1992) Al and Si coordination in SiO2–Al2O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem Geol 96:333–349

    Article  Google Scholar 

  • Rivers ML, Carmichael ISE (1987) Ultrasonic studies of silicate melts. J Geophys Res 92B:9247–9270

    Article  Google Scholar 

  • Rocherulle J, Ecolivet C, Poulain M, Verdier P, Laurent Y (1989) Elastic moduli of oxynitride glasses: extension of Makishima and Mackenzie’s theory. J Non-Cryst Solids 108:187–193

    Article  Google Scholar 

  • Rouse GB, Kamitsos EI, Risen WM Jr (1981) Brillouin spectra of mixed alkali glasses: xCs2O(1–x)Na2O5SiO2. J Non-Cryst Solids 45:257–269

    Article  Google Scholar 

  • Ryerson FJ (1985) Oxide solution mechanisms in silicate melts: systematic variations in the activity coefficient of SiO2. Geochim Cosmochim Acta 49:637–651

    Article  Google Scholar 

  • Ryerson FJ, Hess PC (1980) The role of P2O5 in silicate melts. Geochim Cosmochim Acta 44:611–624

    Article  Google Scholar 

  • Scarfe CM, Cronin DJ (1986) Viscosity-temperature relationships of melts at 1 atm in the system diopside-albite. Amer Mineral 71:767–771

    Google Scholar 

  • Schilling FR, Hauser M, Sinogeikin SV, Bass JD (2001) Compositional dependence of elastic properties and density of glasses in the system anorthite-diopside-forsterite. Contrib Mineral Petrol 141:297–306

    Google Scholar 

  • Schilling FR, Sinogeikin SV, Hauser M, Bass JD (2003) Elastic properties of model basaltic melt compositions at high temperatures. J Geophys Res 108(B6):ECV 9 1–13

    Google Scholar 

  • Schreiber HD, Kochanowski BK, Schreiber CW, Morgan AB, Coolbaugh MT, Dunlap TG (1994) Compositional dependence of redox equilibria in sodium silicate glasses. J Non-Cryst Solids 177:340–346

    Article  Google Scholar 

  • Schroeder J, Mohr R, Macedo PB, Montrose CJ (1973) Rayleigh and Brillouin scattering in K2O–SiO2 glasses. J Amer Ceram Soc 56:510–514

    Article  Google Scholar 

  • Shannon RD (1976) revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Shimizu N, Kushiro I (1991) The mobility of Mg, Ca, and Si in diopside-jadeite liquids at high pressures. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magma. Springer, Berlin Heidelberg New York, pp 192–212

    Google Scholar 

  • Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131–148

    Article  Google Scholar 

  • Stebbins JF, Murdoch JB, Schneider E, Carmichael ISE, Pines A (1985) A high-temperature high-resolution NMR study of 23Na, 27Al and 29Si in molten silicates. Nature 314:250–252

    Article  Google Scholar 

  • Stein DJ, Stebbins JF, Carmichael ISE (1986) Density of molten sodium aluminosilicates. J Amer Ceram Soc 69:396–399

    Article  Google Scholar 

  • Sun K-H (1947) Fundamental condition of glass formation. J Amer Ceram Soc 30:277–281

    Article  Google Scholar 

  • Sun K-H, Huggins ML (1947) Energy additivity in oxygen-containing crystals and glasses. II. J Phys Colloid Chem 5:438–443

    Article  Google Scholar 

  • Taylor M, Brown GE (1979) Structure of mineral glasses. I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta 43:61–77

    Article  Google Scholar 

  • Vaills Y, Luspin Y, Hauret G, Coté B (1996) Two opposite effects of sodium on elastic constants of silicate binary glasses. Mater Sci Eng B40:199–202

    Article  Google Scholar 

  • Vaills Y, Luspin Y, Hauret G (2001) Annealing effects in SiO2–Na2O glasses: investigation by Brillouin scattering. J Non-Cryst Solids 86:224–234

    Article  Google Scholar 

  • Vo-Thanh D, Polian A, Richet P (1996) Elastic properties of silicate melt up to 2350 K from Brillouin scattering. Geophys Res Lett 23:423–426

    Article  Google Scholar 

  • Whitfield CH, Brody EM, Bassett WA (1976) Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell. Rev Sci Instrum 47:942–947

    Article  Google Scholar 

  • Yamane M, Okuyama M (1982) Coordination number of aluminum ions in alkali-free alumino-silicate glasses. J Non-Cryst Solids 52:217–226

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referee for helpful comments and Mr. T. S. Kao, Department of Chemistry of National Taiwan University, for the help with DSC experiments. This work was supported by National Science Council, Taiwan, R. O. C. under contacts NSC 90-2116-M-001-007 and NSC 91-2116-M-001-016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Cherng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Liu, Lg. Composition dependence of elasticity in aluminosilicate glasses. Phys Chem Minerals 33, 332–346 (2006). https://doi.org/10.1007/s00269-006-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-006-0084-z

Keywords

Navigation