Physics and Chemistry of Minerals

, Volume 32, Issue 4, pp 295–300 | Cite as

First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se

  • Razvan CaracasEmail author
  • Xavier Gonze
Original papers


We determine the valence electron density and the electron band structure of stibnite, bismutinite, guanajuatite and antimonelite using the density functional theory. All the compounds present similar electronic properties and exhibit a quasi-1D character. We perform a detailed analysis of the charge topology, the atomic static charges and volumes.


Charge Topology Bi2Se3 Electron Band Structure Bi2S3 Sb2S3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



X.G. acknowledges financial support from the Belgian FNRS.


  1. Nowacki W (1971) Crystal chemistry of sulphosalts. Soc Mining Geol Jpn, spec issue 2:3-9Google Scholar
  2. Makovicky E (1981) The building principles and classification of bismuth-lead sulphosalts and related compounds. Fortsch Miner 59:137-190Google Scholar
  3. Makovicky E (1989) Modular classification of sulphosalts—current states. Definition and application of homologous series. N Jb Miner Abh 160:269-297Google Scholar
  4. Makovicky E (1993) Rod-based sulphosalt structures derived from the SnS and PbS archetypes. Eur J Miner 5:545-591Google Scholar
  5. Pauling L (1970) Crystallography and chemical bonding of sulfide minerals. Miner Soc Am Spec Pap 3:125-131Google Scholar
  6. Hummel W, Armbruster T (1987) Tl1+, Pb2+ and Bi3+ bonding and ordering in sulphides and sulphosalts. Schweiz Miner Petrogr Mitt 67:213-218Google Scholar
  7. Ghosal S, Sack RO (1999) Bi–Sb energetics in sulfosalts and sulfides. Miner Mag 63:723-733Google Scholar
  8. Hohenberg P and Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864-B871CrossRefGoogle Scholar
  9. Kohn W and Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133-A1138CrossRefGoogle Scholar
  10. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY and Allan DC (2002) First-principles computation of material properties : the ABINIT software project. Comp Mater Sci 25:478-492CrossRefGoogle Scholar
  11. Payne MC, Teter MP, Allan DC, Arias TA and Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045-1097Google Scholar
  12. Gonze X (1996) Towards a potential-based conjugate gradient algorithm for order-N self-consistent total energy calculations. Phys Rev B 54:4383-4386Google Scholar
  13. Monkhorst HJ and Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188-5192CrossRefGoogle Scholar
  14. Troullier N and Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993-2006Google Scholar
  15. ICSD–Inorganic Crystal Structure Database (2001)
  16. Bayliss P and Nowacki W (1972) Refinement of the crystal structure of stibnite, Sb2S3. Z Kristall 135:308–315Google Scholar
  17. Voutsas GP, Papazoglou AG and Rentzeperis PJ (1985) Z Kristall 171:261-268Google Scholar
  18. Kanishcheva AS, Mikhailov YN and Trippel AF (1981) Izv Akad Nauk SSSR. Neorganicheskie Mater. 17:1972-1975Google Scholar
  19. Atabaeva EY, Mashkov SA and Popova SV (1973) Kristallografiya 18:173-174Google Scholar
  20. Lehmann G and Taut M (1972) On the numerical calculation of the density of states and related properties. Phys Status Solidi B 54:469Google Scholar
  21. Bader RFW, Anderson SG and Duke AJ (1979) Quantum topology of molecular charge distributions. 1. J Amer Chem Soc 101:1389-1395Google Scholar
  22. Bader RFW, Nguyen-Dang TT and Tal Y (1979) Quantum topology of molecular charge distributions. II. Molecular structure and its change. J Chem Phys 70:4316-4329Google Scholar
  23. Mahmoud S, Eid AH and Omar H (1997) Optical characteristics of bismuth sulfide (Bi2S3) thin films. Fizika A 6:111-120Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Unité de Physico-Chimie et de Physique de MatériauxUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations