Skip to main content
Log in

Electronic and optical properties of Fe, Zn and Pb sulfides

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract.

Ab initio quantum-chemical calculations of the spatial and electronic structures of sphalerite (ZnS), pyrite (FeS2) and galena (PbS), using the density functional theory (DFT) local density approximation (LDA) and generalized gradient approximation (GGA), the Hartree–Fock (HF) method and the hybrid functional B3LYP, have been carried out. For galena, the DFT LDA and GGA functionals provided the best estimate of the band gap, from within −0.1 eV to +0.4 eV of the measured value. B3LYP and RHF gave rise to errors of +1.3 and +5.4 eV, respectively. The unit cell parameter error varied from between −1.1% and +2.3% for all the functionals examined. For sphalerite the B3LYP functional provided the best estimate of the band gap (error +0.3 eV). The unit cell parameter error varied between −2.1% and +2.0% for the various DFT functionals and B3LYP. RHF gave rise to an error of +3.8%. For FeS2, the DFT-GGA approach provides the best results for both the unit cell and the band gap. This may be due to mutual cancellation of the crystal field splitting and band separation force, which are of equal but opposite magnitudes. The calculated density of states (DOS) for the conduction band is used to interpret the experimental features of the S 1s XANES (X-ray absorption near-edge structure) spectra obtained using synchrotron radiation. Because of the Δl = ±1 selection rule for electron excitation, the S K-edge XANES spectra represent a transition of the S 1s electron to conduction band S p-like orbitals. The near-edge region, up to 15 eV past the edge is approximated well by the DOS. Individual peaks in the DOS correlate with peaks in the XANES spectra. In addition, the imaginary part of the dielectric function, which reflects the transitions from occupied to unoccupied levels, is used to model the near-edge region of the XANES, using the DFT-GGA formalism. Individual peaks in the XANES spectrum are moderately well resolved using the dielectric function, especially for ZnS and FeS2, while the DOS for the conduction band is more successful in predicting the shape of the XANES spectra for all three minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Accelrys Inc. (2002) Materials Studio CASTEP, San Diego

  • Agrawal BK, Yadav PS, Agrawal S (1994) Ab initio calculation of the electronic, structural, and dynamical properties of Zn-based semiconductors. Phys Rev B 50(20):14881–14887

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  • Bocquet AE, Mizokawa T, Saitoh T, Namatame H, Fujimori A (1992) Electronic structure of 3d-transition-metal compounds by analysis of the 2p core-level photoemission spectra. Phys Rev B 46(7):3771–3784

    Article  CAS  Google Scholar 

  • Bullett DW (1982) Electronic structure of 3d pyrite- and marcasite-type sulphides. J Phys C 15:6163–6174

    CAS  Google Scholar 

  • Ceperley DM, Alder BJ (1980) Ground State of the Electron Gas by a Stochastic Method. Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  • Chattopadhyay T, von Schnering HG (1985) High pressure x-ray diffraction study on pyrite (p-FeS2), marcasite (m-FeS2) and manganese disulfide to 340 kbar: a possible high spin-low spin transition in manganese disulfide. J Phys Chem Solids 46:113–116

    Article  CAS  Google Scholar 

  • Edelbro R, Sandström Å, Paul J (2003) Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite. Appl Surf Sci 206(1–4):300–313

    Article  CAS  Google Scholar 

  • Ennaoui A, Fiechter C, Pettenkofer N, Alonso-Vante N, Buker K, Bronold M, Hoepfner C, Tributsch H (1993) So Energy Mater Sol Cells 29:289

    Article  CAS  Google Scholar 

  • Eyert V, Höck KH, Fiechter S, Tributsch H (1998) Electronic structure of FeS2: the crucial role of electron-lattice interactions. Phys Rev B 57(11):6350–6359

    Article  CAS  Google Scholar 

  • Finklea S, Cathey L, Amma E (1976) Investigation of the bonding mechanism in pyrite using the Mossbauer effect and X-ray crystallography. Acta Crystallogr A 32:529

    Article  Google Scholar 

  • Gabrelian BV, Lavrentyev AA, Nikiforov IY (1999) XANES and unoccupied DOS of sulfides and selenides of Zn and Cd. Physica Status Solidi B 215(2):1041–1047

    Article  CAS  Google Scholar 

  • Gilbert B, Frazer BH, Zhang H, Huang F, Banfield JF, Haskel D, Lang JC, Srajer G, De Stasio G (2002) X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys Rev B 66:245205/1–245205/6

    Article  CAS  Google Scholar 

  • Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413

    Article  Google Scholar 

  • Hyland MM, Bancroft GM (1988) An XPS study of gold deposition at low temperatures on sulphides minerals: reducing agents. Geochim Cosmochim Acta 53:367-372

    Article  Google Scholar 

  • Jaffe JE, Hess AC (1993) Hartree–Fock study of phase changes in zinc oxide at high pressure. Phys Rev B 48 (11):7903–7909

    Article  CAS  Google Scholar 

  • Jephcoat A, Olson P (1987) Is the inner core of the Earth pure iron? Nature 325:332

    Article  CAS  Google Scholar 

  • Karguppikar AM, Vedeshwar AG (1988) Electrical and optical properties of natural iron pyrite (FeS2). Physica Status Solidi A Appl Res 109(2):549–558

    CAS  Google Scholar 

  • Kohn SE, Yu PY, Petroff Y, Shen R, Tsang Y, Cohen ML (1973) Electronic band structure and optical properties of PbTe, PbSe, and PbS. Phys Rev B 8 (4):1477–1488

    Article  CAS  Google Scholar 

  • Laajalehto K, Kartio I, Nowak P (1994) XPS study of clean metal sulfide surfaces. Appl Surf Sci 81:11–15

    Article  CAS  Google Scholar 

  • Lauer S, Trautwein AX, Harris FE (1984) Electronic-structure calculations, photoelectron spectra, optical spectra, and Mössbauer parameters fir the pyrites MS2 (M = Fe, Co, Ni, CU, Zn). Phys Rev B 29(12):6774–6783

    Article  CAS  Google Scholar 

  • Ławniczak-Jabłonska K, Iwanowski RJ, Gołacki Z, Traverse A, Pizzini S, Fontaine A, Winter I, Hormes J (1996) Local electronic structure of ZnS and ZnSe doped by Mn, Fe, Co, and Ni from X-ray absorption near-edge structure studies. Phys Rev B 53(3):1119–1128

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correction enery formula into a functional of the election density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  • Li EK, Johnson KH, Eastman DE, Freeouf JL (1974) Localized and bandlike valence-electron states in FeS2 and NiS2. Phys Rev Lett 32(9):470–472

    Article  CAS  Google Scholar 

  • Li D, Bancroft GM, Kasrai M, Fleet ME, Feng XH, Tan KH, Yang BX (1994a) Sulfur K- and L-edge XANES and electronic structure of zinc, cadmium and mercury monosulfides: a comparative study. J Phys Chem Solids 55 (7):535–543

    Article  CAS  Google Scholar 

  • Li D, Bancroft GM, Kasrai M, Fleet ME,Yang BX, Feng XH, Tan K, Peng M (1994b) Sulfur K-edge and L-edge X-ray absorption spectroscopy of sphalerite, chalcopyrite and stannite. Phys Chem Miner 20 (7):489–499

    Article  CAS  Google Scholar 

  • Li D, Bancroft M, Kasrai M, Fleet ME, Feng X, Tan K (1995) S K- and L-edge X-ray absorption spectroscopy of metal sulfides and sulfates: applications in mineralogy and geochemistry. Can Mineral 33:949–960

    CAS  Google Scholar 

  • Lide DR (2003) CRC handbook of chemistry and physics, 84th edn. CRC, Boca Raton, pp 83

  • Littlewood PB (1980) The crystal structure of IV-VI compounds. I. Classification and description. J Phys C 13:4855–4873

    CAS  Google Scholar 

  • Llunell M (2004) MULFAS User’s Guide, University of Torino, Italy. http://www.crystal.unito.it/tutojan2004/doc/mulfas_userguide.pdf

  • Martins JL, Troullier N, Wei SH (1991) Pseudopotential plane-wave calculations for ZnS. Phys Rev B 43 (3):2213–2217

    Article  CAS  Google Scholar 

  • McKeown DA (1992) X-ray-absorption near-edge structure of transition-metal zinc-blende semiconductors: calculation versus experimental data and the pre-edge feature. Phys Rev B 45(6):2648–2653

    Article  CAS  Google Scholar 

  • Meng L, Liu YH, Tian L (2003) Structural, optical and electrical properties of polycrystalline pyrite (FeS2) film obtained by thermal sulfuration of iron films. J Crystal Growth 253(1–4):530–538

    Article  CAS  Google Scholar 

  • Mian M, Harrison NM, Saunders VR, Flavell WR (1996) An ab initio Hartree–Fock investigation of galena (PbS). Chem Phys Lett 257:627–632

    Article  CAS  Google Scholar 

  • Mosselmans JFW, Pattrick RAD, van der Laan G, Charnock JM, Vaughan DJ, Henderson CMB, Garner CD (1995) X-ray absorption near-edge spectra of transition metal disulfides FeS2 (pyrite and marcasite), CoS2, NiS2 and CuS2, and their isomorphs FeAsS and CoAsS. Phys Chem Miner 22:311–317

    Article  CAS  Google Scholar 

  • Muscat J, Klauber C (2001) A combined ab initio and photoelectron study of galena (PbS). Surf Sci 491:226–238

    Article  CAS  Google Scholar 

  • Muscat J, Hung A, Russo S, Yarovsky I (2002) First-principles studies of the structural and electronic properties of pyrite FeS2. Phys Rev B 65:054107–1-12

    Article  Google Scholar 

  • Nesbitt HW, Uhlig I, Bancroft GM, Szargan R (2003) Resonant XPS study of the pyrite valence band with implications for molecular orbital contributions. Am Mineral 88(8–9):1279–1286

    CAS  Google Scholar 

  • Nimitz (1983) Lanoldt-Börnstein, vol III/17f

  • Opahle I, Koepernik K, Eschrig H (2000) Full potential band structure calculation of iron pyrite. Comput Mater Sci 17(2–4):206–210

    Article  CAS  Google Scholar 

  • Padaki VC, Lakhshmikumar ST, Subrahmanyam SV, Gopal ESR (1981) Elastic constants of galena down to liquid helium temperatures. Pramana 71:25–32

    Google Scholar 

  • Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals; an introduction to modern structural chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Peacock MA, Smith FG (1941) Precise measurements of the cube-edge of common pyrite and nickeliferous pyrite. Univ Toronto Geol Ser 46:107–117

    Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B46:6671

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  • Sainctavit P, Calas G, Petiau J, Karnatak R, Esteva JM, Brown Jnr GE (1986) Electronic Structure from X-ray K-edges in ZnS:Fe and CuFeS2. J Phys C 8 (12):411–414

    Google Scholar 

  • Sainctavit P, Petiau J, Benfatto M, Natoli CR (1987) XANES study of sulfur and zinc K-edges in zincblende:experiments and multiple-scattering calculations. J Phys C 9 (12):1109–1112

    Google Scholar 

  • Sainctavit P, Petiau J, Benfatto M, Natoli CR (1989) Comparison between XAFS experiments and multiple-scattering calculations in silicon and zincblende. Physica B158:347–350

    CAS  Google Scholar 

  • Santoni A, Paolucci G, Santoro G, Prince KC, Christensen NE (1992) Band structure of lead sulphide. J Phys C Condens Matter 4:6759–6768

    Article  CAS  Google Scholar 

  • Saunders VR, Dovesi R, Roetti C, Causà M, Harrison NM, Orlando R, Zicovich-Wilson CM (1998) CRYSTAL98 User’s manual

  • Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush IJ, D’Arco Ph, Llunell M (2003) CRYSTAL03 User’s manual

  • Schlegel A, Wachter P (1976) Optical properties, phonons and electronic structure of iron pyrite (FeS2). J Phys C Solid State Phys 9(17):3363–3369

    Article  CAS  Google Scholar 

  • Sugiura C (1981) Sulfur x-ray absorption spectra of FeS, FeS2 and Fe2S3. J Chem Phys 74(1):215–217

    Article  CAS  Google Scholar 

  • Svane A, Antoncik E (1986) Theoretical investigation of the 67Zn Mössbauer isomer shift in the zinc chalcogenides. Phys Rev B 33:7462–7473

    Article  CAS  Google Scholar 

  • Swanson HE and Fuyat RK (1959) Standard X-ray diffraction patterns. US Dept. of Commerce, National Bureau of Standards, pp 16–17

  • Temmermann WM, Durham PJ, Vaughan DJ (1993) The electronic structures of the pyrite-type disulphides (MS2, where M = Mn, Fe, Co, Ni, Cu, Zn) and the bulk properties of pyrite from local density approximation (LDA) band structure calculations. Phys Chem Miner 20:248–254

    Google Scholar 

  • Tossell JA (1977) SCF-Xα scattered wave MO studies of the electronic structure of ferrous iron in octahedral coordination with sulfur. J Chem Phys 66(12):5712–5719

    Article  CAS  Google Scholar 

  • Tossell JA, Vaughan DJ, Burdett JK (1981) Pyrite, marcasite, and arsenopyrite type minerals:crystal chemical and structural principles. Phys Chem Miner 7:177–184

    Article  CAS  Google Scholar 

  • Totir DA, Antonio MR, Schilling P, Pittsworth R, Scherson DA (2002) In situ sulfur K-edge x-ray absorption near edge structure of an embedded pyrite particle electrode in a non-aqueous Li+-based electrolyte solution. Electrochim Acta 47(19):3195–3200

    Article  CAS  Google Scholar 

  • Uhlig I, Szargan R, Nesbitt HW, Laajalehto K (2001) Surface states and reactivity of pyrite and marcasite. Appl Surf Sci 179(1–4):222–229

    Article  CAS  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892

    Article  Google Scholar 

  • van der Heide H, Hemmel R, van Bruggen CF, Haas C (1980) X-ray photoelectron spectra of 3d transition metal pyrites. J Solid State Chem 33:17–25

    Google Scholar 

  • Vaughan DJ, Tossell JA (1980) Can Mineral 18:157

    CAS  Google Scholar 

  • Vaughan DJ, Tossell JA (1983) Phys Chem Miner 9:253

    Article  CAS  Google Scholar 

  • Wasserstein B (1951) Precision lattice measurements of galena. Am Miner 36:102–115

    CAS  Google Scholar 

  • Wang CS, Klein BM (1981) First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. Phys Rev B 24(6):3393–3416

    Article  CAS  Google Scholar 

  • Womes M, Karnatak RC, Esteva JM, Lefebvre I, Allan G, Olivier-Fourcade J, Jumas JC (1997) Electronic structure of FeS and FeS2: X-ray absorption spectroscopy and band structure calculations. J Phys Chem Solids 58 (2):345–352

    Article  CAS  Google Scholar 

  • Wyckoff RWG (1965) Crystal structures, vol 1. Interscience, New York

    Google Scholar 

  • Zhao GL, Callaway J, Hayashibara M (1993) Electronic structures of iron and cobalt pyrites. Phys Rev B 48(21):15781–15785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of the ARC Special Research Centre for Particles and Material Interfaces. ARG and RTJ would also like to acknowledge the provision of instrument time at the Photon Factory Synchrotron, Japan and the provision of travel funding from the Access to Major Research Facilities Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. U. von Oertzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oertzen, G.U.v., Jones, R.T. & Gerson, A.R. Electronic and optical properties of Fe, Zn and Pb sulfides. Phys Chem Minerals 32, 255–268 (2005). https://doi.org/10.1007/s00269-005-0464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0464-9

Keywords

Navigation