Skip to main content

Advertisement

Log in

A Mössbauer and FTIR study of synthetic amphiboles along the magnesioriebeckite – ferri-clinoholmquistite join

  • Original papers
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A series of amphiboles along the magnesioriebeckite—□Na2Mg3Fe3+ 2Si8O22(OH)2– ferri-clinoholmquistite—□Li2Mg3Fe3+ 2Si8O22(OH)2 - join, defined by the BLiB Na−1 exchange vector, were hydrothermally synthesized at 700°C, 0.4 GPa, NNO + 1 redox conditions. Powder XRD and SEM-EDAX showed a very high (> 90%) amphibole yield for all samples. X-ray patterns were indexed in the C2/m space group; refined cell-parameters show a linear decrease of a and β as a function of chemistry. IR spectra in the OH-stretching region show four main and rather sharp bands; these are assigned to Mg and Fe2+ at M(1,3), and indicate that the obtained amphiboles depart from the nominal octahedral composition (M1,3Mg3). The IR spectra also show that there is an increasing filling-up of the A-site for increasing Na in the system (increasing solid-solution toward, arfvedsonite). Mössbauer spectra show four well-defined quadrupole doublets which are assigned to Fe3+ at M2 and to Fe2+ at M1, M3 and M4, respectively. The Fe3+/Fe2+ content derived from fitted peak areas show variable Fe3+ concentration along the series. Mössbauer spectra also show a distinct alteration of 57Fe hyperfine parameters with changing Na–Li at M4. The most evident variation is observed for the quadrupole splitting of Fe3+ at M2, which increases by ≈50% from ferri-clinoholmquistite to magnesio-riebeckite; this suggest that the M2 octahedron in ferri-clinoholmquistite is much closer to the ideal geometry than the M2 octahedron in magnesio-riebeckite. Mössbauer spectra show also a well-defined increase in the Fe2+ quadrupole splitting of the M1 and M3 octahedra, which is attributed to the Na–Li distribution at the B-sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Burns RG, Strens RGJ (1966) Infrared study of the hydroxile bonds in clinoamphiboles. Science 153:890–892

    CAS  Google Scholar 

  • Caballero JM, Monge A, La Iglesia A, Tornos F (1998) Ferri-clinoholmquistite, Li2(Fe2+, Mg)3Fe3+ 2Si8O22(OH)2, a new BLi clinoamphibole from the Pedriza Massif, Sierra de Guadarrama, Spanish Central System. Am Mineral 83:167–171

    CAS  Google Scholar 

  • Della Ventura G, Robert JL, Hawthorne FC (1996) Infrared spectroscopy of synthetic (Ni,Mg,Co)-potassium-richterite. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral spectroscopy: a tribute to Roger G.Burns. The geochemical Society Special Pubblication No. 5, pp 55–63

  • Della Ventura G, Hawthorne FC, Robert JL, Iezzi G (2003) Synthesis and infrared spectroscopy of amphiboles along the tremolite—pargasite join. Eur J Mineral 15:341–347

    Article  CAS  Google Scholar 

  • Della Ventura G, Iezzi G, Redhammer G, Hawthorne FC, Scaillet B, Novembre D (2005) Synthesis and crystal-chemistry of alkali amphiboles in the system Na2O –MgO–FeO–Fe2O3–SiO2–H2O as a function of \(f_{{\text{o}}_2 } .\) Am Mineral (in press)

  • Gaillard F, Scaillet B, Pichavant M, Beny JM (2001) The effect of water and \(f_{{\text{o}}_2 } \) on the ferric-ferrous ratio of silicic melts. Chem Geol 174:255–273

    Article  CAS  Google Scholar 

  • Goldman DS (1979) A reevaluation of the Mossbauer spectroscopy of calcic amphiboles. Am Mineral 64:109–118

    CAS  Google Scholar 

  • Goldman DS, Rossman GR (1977) The identification of Fe2+ in the M(4) site of calcic amphiboles. Am Mineral 62:205–216

    CAS  Google Scholar 

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by a gelling method. Mineral Mag 36:832–838

    CAS  Google Scholar 

  • Hawthorne FC (1983) The crystal chemistry of the amphiboles. Can Mineral 21:174–481

    Google Scholar 

  • Hawthorne FC, Oberti R, Ungaretti L, Grice JD (1992) Leakeite, NaNa2(Mg2Fe 3+2 Li)Si8O22(OH)2a new alkali amphiboles from the Kajlidongri manganese mine, Jhabua district, Madhya Pradesh, India. Am Mineral 77:1112–1115

    CAS  Google Scholar 

  • Hawthorne FC, Ungaretti L, Oberti R, Bottazzi P (1993) Li: An important component in igneous alkali amphiboles. Am Mineral 78:733–745

    CAS  Google Scholar 

  • Hawthorne FC, Ungaretti L, Oberti R, Cannillo E. (1994) The mechanism of [6] Li incorporation in amphiboles. Am Mineral 79:443–451

    CAS  Google Scholar 

  • Hawthorne FC, Della Ventura G, Robert JL, Welch MD, Raudsepp M, Jenkins DM (1997) A Rietveld and infrared study of synthetic amphiboles along the potassium–richterite–tremolite join. Am Mineral 82:708–716

    Google Scholar 

  • Iezzi G, Della Ventura G, Cámara F, Pedrazzi G, Robert JL (2003) The B Na – BLi exchange in A-site vacant amphiboles: synthesis and cation ordering along the ferri-clinoferroholmquistite – riebeckite join. Am Mineral 88:955–961

    CAS  Google Scholar 

  • Iezzi G, Cámara F, Della Ventura G, Oberti R, Pedrazzi G, Robert JL (2004) Synthesis, crystal structure and crystal-chemistry of ferri-clinoholmquistite, OLi2Mg3Fe3+ 2Si8O22(OH)2. Phys Chem Miner 31:375–385

    Article  CAS  Google Scholar 

  • Larson AC, Von Dreele RB (1997) GSAS: General Structure Analysis System. Document LAUR 86–748. Los Alamos Nat Lab

  • Leake BE et al (1997) Nomenclature of amphiboles: Report of the subcommitte on amphiboles of the International Mineralogical Association, commission on new minerals and minerals name. Eur J Mineral 9:623–651

    CAS  Google Scholar 

  • Leake BE et al (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Eur J Mineral 16:190–195

    Article  Google Scholar 

  • Oberti R, Caballero JM, Lopez-Andres S, Herreros V (2000) Sodic-ferripedrizite, a new monoclinic amphibole bridging the magnesium-iron-manganese-lithium and the sodium-calcium groups. Am Mineral 85:578–585

    CAS  Google Scholar 

  • Oberti R, Camara F, Ottolini L, Caballero JM (2003) Lithium in amphiboles: detection, quantification and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. Eur J Mineral 15:309–319

    Article  CAS  Google Scholar 

  • Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instr Methods Phys Res B 58:85–97

    Google Scholar 

  • Rancourt DG, McDonald AM, Lalonde AE, Ping JY (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. Am Mineral 78:1–7

    CAS  Google Scholar 

  • Rancourt DG, Ping JY, Boukili B, Robert JL (1996) Octahedral-site Fe2+ quadrupole splitting distributions from Mössbauer spectroscopy along (OH, F)-annite join. Phys Chem Miner 23:63–71

    Article  CAS  Google Scholar 

  • Redhammer GJ, Roth G (2002) Crystal structure and Mössbauer spectroscopy of the synthetic amphibole potassic ferri-ferrorichterite at 298 K and low temperatures (80–110 K). Eur J Mineral 14:105–114

    Article  CAS  Google Scholar 

  • Rowbotham G, Farmer VC (1973) The effect of “A” site occupancy upon the hydroxyl stretching frequency in clinoamphiboles. Contrib Mineral Petrol 38:147–149

    Article  Google Scholar 

  • Scaillet B, Evans BW (1999) The june 15, 1991 eruption of Mount Pinatubo: I. Phase equilibria and pre-eruption P-T-fO2-fH2O conditions of the dacite magma. J Petrol 40:381–411

    Article  CAS  Google Scholar 

  • Scaillet B, Pichavant M, Roux J, Humbert G, Lefevre A (1992) Improvements of the Shaw membrane techniques for measurements and control of \(f_{H_2 } \) at high temperatures and pressure. Am Mineral 77:647–655

    CAS  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimentally crystallisation of leucogranite magmas. J Petrol 36:663–705

    Google Scholar 

  • Strens RGJ (1974) The common chain, ribbon and ring silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineral Soc Monogr 4:305–330

    Google Scholar 

  • Strong DF, Taylor RP (1984) Magmatic-subsolidus and oxidation trends in composition of amphiboles from silica-saturated peralkaline igneous rocks. Tschermaks Mineralogisch-Petrologische. Mitteilungen 32:211–222

    CAS  Google Scholar 

  • Van Alboom A, De Grave E (1996) Temperature dependence of the 57Fe Mössbauer parameters in riebeckite. Phys Chem Miner 23:377–386

    CAS  Google Scholar 

Download references

Acknowledgements

The syntheses described here were done during the PhD work of GI at I.S.T.O.-CNRS, Orlèans (France), financially supported by a grant from the University of Chieti (Italy) and the Italian Ministry of Foreign Affairs. The post-doc stay of GI at Bayerisches GeoInstitut was financed by a Sofja Kovalevskaja Program. Sincere thanks are due to G. Amthauer (Salzburg) for allowing the use of Mössbauer equipments and to Mag. G. Tippelt for assistance during the Mössbauer data collection. Financial support to GJR was provided by the Austrian “Fonds zur Förderung der Wissenschaftlichen Forschung” grant R33-N10 (Schrödinger-Rückkehr-Programm). Critical review from two anonymous referees improved the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Della Ventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Ventura, G., Redhammer, G.J., Iezzi, G. et al. A Mössbauer and FTIR study of synthetic amphiboles along the magnesioriebeckite – ferri-clinoholmquistite join. Phys Chem Minerals 32, 103–113 (2005). https://doi.org/10.1007/s00269-005-0451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0451-1

Keywords

Navigation