Skip to main content

Advertisement

Log in

Characterization of synthetic hedenbergite (CaFeSi2O6)–petedunnite (CaZnSi2O6) solid solution series by X-ray single crystal diffraction

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Clinopyroxenes of the solid solution series hedenbergite (CaFeSi2O6)–petedunnite (CaZnSi2O6) were synthesized at temperatures of 825–1200°C and pressures of 0.5–2.5 GPa. Compositions were determined by electron microprobe analysis. Selected crystals were investigated by means of single crystal diffraction and structure refinement and the structural distortion was studied depending on the substitution of iron by zinc on the octahedral M1 site. It is shown that the coordination of the M1 site has the most significant effect on M–O bond lengths, with changes on the other sites accommodating this distortion. The mean quadratic elongation and the octahedral angle variance as quantitative measures of the distortion of the coordination polyhedron were correlated with former results of 57Fe Mössbauer spectroscopy at 298 K. The results presented now complete an earlier work on synthetic, crystalline powders of the same material and deliver exact structural data that were not possible to obtain by Rietveld refinements on powder data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Burton JC, Taylor LA, Chou IM (1982) The fO2–T and fS2–T stability relations of hedenbergite and of hedenbergite–johannsenite solid solutions. Econ Geol 77:764–783

    Google Scholar 

  • Bruker AXS (1994) XPREP, program for preparing single crystal data

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58:594–618

    Google Scholar 

  • Capitani GC, Mellini M, (2000) The crystallisation sequence of the Campiglia Marittima skarn. N Jb Miner-Mh 3:97–115

    Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structural elements. Mineral Soc Am, Spec Pap 2:31–50

    Google Scholar 

  • Dollase WA, Gustafson WI (1982) 57Fe Mössbauer spectral analysis of sodic clinopyroxenes. Am Mineral 67:311–327

    Google Scholar 

  • Essene EJ, Peacor DR (1987) Petedunnite (CaZnSi2O6), a new zincian clinopyroxene from Franklin, New Jersey, and phase equilibria for zincian pyroxenes. Am Mineral 72:157–166

    Google Scholar 

  • Fehr KT, Heuss-Assbichler S (1994) The trace-element content of Zn in garnet, clinopyroxene and epidote as a petrogenetic indicator. Terra Abstr No. 1. Terra Nova 6:23

    Google Scholar 

  • Fehr KT, Hobelsberger B (1997) Experimentelle Bestimmung der chemischen Potentiale von Hedenbergit in der Mischreihe Hedenbergit-Petedunnit. Beiheft European J Miner 9:98

    Google Scholar 

  • Gustafson WI (1974) The stability of andradite, hedenbergite and related minerals in the system Ca–Fe–Si–O–H. J Petrol 15:455–496

    Google Scholar 

  • Haselton HT, Robie RA, Hemingway BS (1987) Heat capacities of synthetic hedenbergite, ferrobustamite, and CaFeSi2O6 glass. Geochim Cosmochim Acta 51:2211–2217

    Article  Google Scholar 

  • Heuer M, Bente K, Steins M, Rothkopf A (1998) Crystal structure of calcium tectozincotrisilicate, CaZnSi3O8. Z Krist-NCS 213(4):691–692

    Google Scholar 

  • Heuer M, Huber AL, Bromiley G (2002a) Crystal structure of calcium iron zinc catena–disilicate–Ca0.98 Fe0.59 Zn0.46 Si1.98 O6. Z Kristallogr New Crystal Structures 217:465–466

    Google Scholar 

  • Heuer M, Huber AL, Redhammer G (2002b) Crystal structure Calcium iron zinc catena-disilicate –Ca1.00 Fe0.21 Zn0.85 Si1.97 O6. Z Kristallogr New Crystal Structures 217:467–468

    Google Scholar 

  • Huber AL, Heuer M, Redhammer G, Hochleitner R (2000) Kristallchemie quaternärer Klinopyroxene aus Skarnen. Beiheft zum Euro J Miner 12:85

    Google Scholar 

  • Huber AL, Bromiley G (2001) Stability and thermodynamic mixing properties of hedenbergite-petedunite solid solution. Jahresbericht 2001, Bayerisches Forschungsinstitut für experimentelle Geochemie und Geophysik, Univ. Bayreuth 51–52

  • Huber AL, Fehr KT (2002) Crystal chemistry and thermodynamic mixing properties of hedenbergite-petedunnite-johannsenite-diopside solid solutions. J Conf Abstracts 7:47

    Google Scholar 

  • Huber AL, Fehr KT (2003a) Thermodynamische Eigenschaften der Mischreihe Hedenbergit-Petedunnit Ca(Fe,Zn)Si2O6. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 48:172–173

    Google Scholar 

  • Huber AL and Fehr KT (2003b) Thermodynamisches Mischmodell für die Reihe Ca(Fe,Zn)Si2O6. Beiheft zum Euro J Miner 15:88

    Google Scholar 

  • Huber AL, Heuer M, Fehr KT, Bente K, Schmidbauer E, Bromiley GD (2004a) Characterization of synthetic hedenbergite (CaFeSi2O6)–petedunnite (CaZnSi2O6) solid solution series by X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Phys Chem Minerals 31:67–79

    Article  Google Scholar 

  • Huber AL, Fehr KT, Heuss-Aßbichler S, Bromiley GD (2004b) Stability and phase relations of Petedunnite (CaZnSi2O6) in the system CaO-ZnO-SiO2. American Mineralogist in prep.

  • Huckenholz HG, Hölzl E, Lindhuber W (1975) Grossularite, its solidus and liquidus relations in the CaO–Al2O3–SiO2–H2O system up to 10 kbar. N Jhb Miner Abh 124: 1–46

    Google Scholar 

  • Ingalls R (l964) Electric-field gradient tensor in ferrous compounds. Phys Rev 133:A787–A795

    Google Scholar 

  • Kawasaki T, Ito E (1994) An experimental determination of the exchange reaction of Fe2+ and Mg2+ between olivine and Ca-rich clinopyroxene. Am Miner 79:461–477

    Google Scholar 

  • Kinrade J, Skippen GB, Wiles DR (1975) A Mössbauer observation on hedenbergite synthesis. Geochim Cosmochim Acta 39:1325–1327

    Article  Google Scholar 

  • Luth WC, Tuttle OF (1963) Externally heated cold seal pressure vessels for use to 10,000 bars and 750°C. Am Mineral 48:1401–1403

    Google Scholar 

  • Moecher DP, Chou I-M (1990) Experimental investigation of andradite and hedenbergite equilibria employing the hydrogen sensor technique, with revised estimates of DfGm, 298 for andradite and hedenbergite. Am Mineral 75:3127–1341

    Google Scholar 

  • Morimoto N, Nakajima Y, Syono Y, Akimoto S, Matsui Y (1975) Crystal structures of pyroxene-type ZnSiO3and ZnMgSi2O6. Acta Cryst B 31:1041–1049

    Article  Google Scholar 

  • Nakano T, Yoshino T, Shimazaki H, Shimizu M (1994) Pyroxene composition as an indicator in the classifcation of skarn deposits. Econ Geol 89:1567–1580

    Google Scholar 

  • Nolan J (1969) Physical properties of synthetic and natural pyroxenes in the system diopside–hedenbergite–acmite. Min Mag 37:216–229

    Article  Google Scholar 

  • Ohashi H, Osawa T, Sato A, Tsukimura K (1996) Crystal structures of (Na,Ca)(Sc,Zn)Si2O6 clinopyroxenes formed at 6 GPa pressure. J Min Petr Econ Geol 91:21–27

    Article  Google Scholar 

  • Perkins D, Vielzeuf D (1992) Experimental investigation of Fe-Mg distribution between olivine and clinopyroxene: implications for mixing properties of Fe-Mg in clinopyroxene and garnet-clinopyroxene thermometry. Am Mineral 77:774–783

    Google Scholar 

  • Pouchou L, Pichoir F (1984) A new model for quantitative X-ray microanalysis. Part I: Application to the analysis of homogeneous samples. Rech Aerospat 3:13–38

    Google Scholar 

  • Raudsepp M, Hawthorne FC, Turnock AC (1990) Evaluation of the Rietveld method for the characterization of fine-grained products of mineral synthesis: the diopside-hedenbergite join. Can Mineral 28:93–109

    Google Scholar 

  • Rutstein MS, Yund RA (1969) Unit-cell parameters of synthetic diopside-hedenbergite solid solutions. Am Mineral 54:238–245

    Google Scholar 

  • Redhammer G, Amthauer G, Lottermoser W, Treutmann W (2000) Synthesis and structural properties of clinopyroxenes of the hedenbergite CaFe2+ Si2O6–aegirine NaFe3+ Si2O6 solidsolution series. Eur J Miner 12:105–120

    Google Scholar 

  • Redhammer GJ, Roth G (2004) Structural variation and crystal chemistry of LiMe3+ Si2O6 clinopyroxenes Me3+ =Al, Ga, Cr, V, Fe, Sc and In. Z Krist 219:278–294

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2005) A comparison of the clinopyroxene compounds CaZnSi2O6 and CaZnGe2O6. Acta Cryst C61:i20-i22

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadradtic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570

    Article  Google Scholar 

  • Saalfeld H (1964) Strukturdaten von Gahnit, ZnAl2O4. Z fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie 120:476–478

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751

    Google Scholar 

  • Sheldrick GM (1997) SHELXL-97 A program for refining crystal structures. University of Göttingen, Germany

    Google Scholar 

  • Simonov MA, Sandomirskii PA, Egorov-Tismenko YK, Belov NV (1977) The crystal structure of willemite Zn2(SiO4). Doklady Akademii Nauk SSSR 237:581–588

    Google Scholar 

  • Thompson JB (1970) Geometric possibilities of amphibole structures and biopyroboles. Am Mineral 55:292–293

    Google Scholar 

  • Turnock AC, Lindsley DH, Grover JE (1973) Synthesis and unit cell parameters of Ca–Mg–Fe pyroxenes. Am Mineral 58:50–59

    Google Scholar 

  • Warren BE, Trautz OR, (1930) The Structure of Hardystonite Ca2ZnSi2O7. Z fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie 75:525–528

  • Yoder HS (1950) High–low quartz inversion up to 10,000 bars. Trans Am Geophys Union 31: 827–835

    Google Scholar 

  • Zhang L, Ahsbahs H, Hafner SS, Koutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245—258 79

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. G. Redhammer, Aachen, for high-pressure synthesis of hedenbergite samples and Dr. Th. Döring for preparing microprobe samples. We thank the Deutsche Forschungsgemeinschaft (DFG) for granting the project under Fe235/5 and Be1088/11 in the priority program “Experimentelle Studien über Elementverteilung.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Heuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, M., Huber, A.L., Bromiley, G.D. et al. Characterization of synthetic hedenbergite (CaFeSi2O6)–petedunnite (CaZnSi2O6) solid solution series by X-ray single crystal diffraction. Phys Chem Minerals 32, 552–563 (2005). https://doi.org/10.1007/s00269-005-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-005-0025-2

Keywords

Navigation