Skip to main content
Log in

Crystal morphology and surface structures of orthorhombic MgSiO3 perovskite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Orthorhombic MgSiO3 perovskite is thought to be the most abundant mineral in the mantle of the Earth. Its bulk properties have been widely studied, but many geophysical and rheological processes are also likely to depend upon its surface and grain boundary properties. As a first step towards modelling these geophysical properties, we present here an investigation of the structures and energetics of the surfaces of MgSiO3-perovskite, employing both shell-model atomistic effective-potential simulations, and density-functional-theory (DFT) calculations. Our shell-model calculations predict the {001} surfaces to be the energetically most stable surfaces: the calculated value of the surface energy being 2.2 J/m2 for the MgO-terminated surface, which is favoured over the SiO2-terminated surface (2.7 J/m2). Also for the polar surfaces {111}, {101} and {011} the MgO-terminated surfaces are energetically more stable than the Si-terminated surfaces. In addition we report the predicted morphology of the MgSiO3 perovskite structure, which is dominated by the energetically most stable {001} and {110} surfaces, and which appears to agree well with the shape of grown single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2 a
Fig. 3
Fig. 4a–c
Fig. 5 a
Fig. 6
Fig. 7
Fig. 8
Fig. 9a–c
Fig. 10

Similar content being viewed by others

References

  • Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite. Earth Planet Sc. Lett. 193:501–508

    Google Scholar 

  • Bando H, Aiura Y, Haruyama Y, Shimizu T, Nishihara Y, (1995) Structure and electronic states on reduced SrTiO3(110) surface observed by scanning tunneling microscopy and spectroscopy. J. Vac. Technol. B 13:1150–1154

    Google Scholar 

  • Bart F and Gautier M (1994) A LEED study of the (0001) a-quartz surface reconstruction, Surf. Sci. 311: L671-L676

  • Bolfan-Casanova N, Keppler H, Rubie DC, (2002) Hydroxyl in MgSiO3 akimotoite: A polarized and high-pressure IR study. Am. Mineral 87(5–6): 603–608

    Google Scholar 

  • Brunen J and Zegenhagen J (1997) Investigation of the SrTiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy. Surf. Sci., 389:349–365

    Google Scholar 

  • Çakmak M and Srivastava GP (2003) Theoretical study of dangling-bond wires on the H-terminated Si surface, Surf. Sci. 532–535:556–559

    Google Scholar 

  • Chen JH, Weidner DJ and Vaughan MT (2002) The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419 (6909): 824–826

    Article  Google Scholar 

  • de Leeuw NH, Higgins FM and Parker SC (1999) Modelling the surface structures and stability of α-quartz, J. Phys. Chem. B 103:1270–1277

    Google Scholar 

  • Erdman N, Poppelmeier KR, Asta M, Warschkow O, Ellis DE and Marks LD (2002) The structure of the TiO2-rich surface of SrTiO3(001). Nature 419:55–58

    Article  Google Scholar 

  • Fei YW and Wang YB (2000) High-pressure and high-temperature powder diffraction. Rev. Mineral. Geochem. 41:521–557

    Google Scholar 

  • Ferrer S and Samorjai GA (1980) Isotope exchange studies of the oxidation and reduction of SrTiO3 single crystal surfaces by water and hydrogen. Surf. Sci., 97: L304-L308

  • Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M and Hausermann D (1998) P-V-T equation of state of MgSiO3 perovskite Phys. Earth Planet. Int. 105:21–31

    Google Scholar 

  • Fiquet G, Dewaele A, Andrault D, Kunz M and Le Bihan T (2000) Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys Res. Lett. 27:21–24

  • Gale JD (1996) Empirical potential derivation for ionic materials. Phil. Mag. B, 73:3-19

    Google Scholar 

  • Gale JD (1997) GULP—a computer program for the symmetry adapted simulation of solids. JCS Faraday Trans. 93:629–637

    Google Scholar 

  • Gavezzoti A (1994) Are crystal structures predictable? Acc. Chem. Res. 27:309–314

    Google Scholar 

  • Gay DH, Rohl AL, Nygren MA, Slater B and Whitmore L (1999) MARVIN’S Program. The Royal Institution of Great Britain, London, UK: www.ri.ac.uk/DFRL/MARVIN

  • Gay DH and Rohl AL (1995) MARVIN: A new computer code for studying surfaces and interfaces and its application to calculating the crystal morphologies of corundum and zircon. J. Chem. Soc. Farad. Trans. 91:925–936

    Google Scholar 

  • Hagendorf C, Schindler KM, Doege T and Neddermeyer H (1998) An STM, XPS and LEED investigation of the BaTiO3(111) surface. Surf. Sci., 402–404:581–585

  • Heifets E, Eglitis RI, Kotomin EA, Maier J and Bortsel G. (2001) Ab initio modelling of surface structure for SrTiO3 perovskite crystals. Phys. Rev. B 64:235417(1–5)

    Google Scholar 

  • Heifets E and Kotomin EA (2000) Atomistic simulations of SrTiO3 and BaTiO3 (110) surface relaxations. Thin Solid Films 358:1-5

    Google Scholar 

  • Heifets E, Kotomin EA and Maier J (2000) Semi-empirical simulations of surface relaxation for perovskite titantes, Surf. Sci., 462; 19–35

    Google Scholar 

  • Heinrich VE (1976) Thermal faceting of (110) and (111) surfaces of MgO. Surf. Sci. 57:385–392

    Google Scholar 

  • Heinrich VE and Cox PA (1996) The Surface Science of Metal Oxides. Cambridge University Press, Cambridge, UK

  • Karato SI, Zhang S and Wenk HR (1995) Superplasticity in Earth’s Lower Mantle: Evidence from Seismic Anisotropy and Rock physics. Science 270:458–461

    Google Scholar 

  • Karato SI and Li P (1992) Diffusion creep in Perovskite: Implications for the rheology of the lower mantle. Science 255:1238–1240

    Google Scholar 

  • Karki BB, Stixrude L, Wentzcovitch RM (2001) High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys. 39:507–534

    Google Scholar 

  • Karki BB, Wentzcovitch RM, de Gironcoli S and Baroni S (2000) Ab initio lattice dynamics of MgSiO3 perovskite at high pressure. Phys. Rev. B 62:14750–14756

    Google Scholar 

  • Kotomin EA, Eglitis RI, Maier J and Heifets E (2001) Calculations of the atomic and electronic structure for SrTiO3 perovskite thin films. Thin Solid Films 400:76–80

    Article  Google Scholar 

  • Koudriachova MV, Beckers JVL, de Leeuw SW (2001) Computer simulation of the quartz surface: a combined ab initio and empirical potential approach, Comp. Mat. Sci. 20:381–386

    Google Scholar 

  • Legrand AP ed. (1998) The surface properties of silicas, John Wiley & Sons, Chichester, UK

  • Lindan P (1999) The Guide 1.1 to CASTEP 3.9. Daresbury Laboratory, Warrington, UK

  • Litton DA and Garofalinia SH (2001) modeling of hydrophilic wafer bonding by molecular dynamics simulations, J. Appl. Phys. 89:6013–6023

    Google Scholar 

  • Lo WJ and Samorjai GA (1977) Temperature-dependent surface structure, composition, and electronic properties of the clean SrTiO3(111) crystal face: Low-energy-electron diffraction, Auger-electron spectroscopy, electron energy loss, and ultraviolet-photoelectron spectroscopy studies. Phys. Rev. B 17:4942–4950

    Google Scholar 

  • Marton FC and Cohen RE (2002) Constraints on lower mantle composition from molecular dynamics simulations of MgSiO3 perovskite. Phys. Earth Planet. In. 134:239–252

    Google Scholar 

  • Matsui M (2000) Molecular dynamics simulation of MgSiO3 perovskite and the 660-km seismic discontinuity. Phys Earth Planet In. 121:77–84

    Google Scholar 

  • Mazzara C, Jupille J, Zheng WQ, Tanguy M, Tadjeddine A and Dumas P (1999) Hydrogen-terminated Si(111) and Si(100) by wet chemical treatment: linear and non-linear infrared spectroscopy, Surf. Sci. 427–428:208–213

    Google Scholar 

  • Meyer B, Padilla J and Vanderbilt D (1999) Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces. Faraday Disc. No. 114:395–405

  • Nörenberg H and Briggs GAD (1999) The Si(001) c(4×4) surface reconstruction: a comprehensive experimental study, Surf. Sci. 430:154–164

  • Oganov AR, Brodholt JP and Price GD (2000) Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite. Phys. Earth and Plan. Inter. 122:277–288

    Google Scholar 

  • Oganov AR, Brodholt JP and Price GD (2001) The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth’s mantle. Nature 41:934–937

    Article  Google Scholar 

  • Padilla J and Vanderbilt D (1998) Ab initio study of SrTiO3 surfaces. Surf. Sci. 418:64–70

    Google Scholar 

  • Padilla J and Vanderbilt D (1997) Ab initio study of BaTiO3 surfaces. Phys. Rev. B 56:1625–1631

    Google Scholar 

  • Parlinski K and Kawazoe Y (2000) Ab initio study of phonons and structural stabilities of the perovskite-type MgSiO3. Eur. Phys. J. B 16:49–58

    Google Scholar 

  • Payne MC, Teter MP, Allan DC, Aris TA and Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64:1045–1097

    Google Scholar 

  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ and Fiolhais V (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–6687

    Google Scholar 

  • Pojani A, Finocchi F and Noguera C (1999a) Polarity on the SrTiO3 (111) and (110) surfaces. Surf. Sci. 442:179–198

    Google Scholar 

  • Pojani A, Finocchi F and Noguera C (1999b) A theoretical study of the unreconstructed polar (111) face of SrTiO3. Appl. Surf. Sci. 142:177–181

    Google Scholar 

  • Price GD, Wall A and Parker SC (1989) The properties and behaviour of mantle minerals – a computer-simulation approach. Phil. Trans. of the Royal Society of London series A- Mathematical physical and engineering sciences 328:391–407

  • Ross NL and Hazen RM (1989) Single Crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys. Chem. Miner. 16:415–420

    Google Scholar 

  • Sekiguchi S, Fujimoto M, Kang MG, Koizumi S, Cho SB and Tanaka J (1998) Structure analysis of SrTiO3 (111) polar surfaces. Jpn. J. Appl. Phys. 37:4140–4143

    Google Scholar 

  • Sigmund WM, Rotov M, Jiang QD, Brunen J, Zegenhagen J and Aldinger F (1997) A titanium-rich (111) surface of SrTiO3 single crystals by thermal annealing. Appl. Phys. A 64:219–220

    Google Scholar 

  • Stixrude L, Cohen RE, Hemley RJ (1998) Theory of minerals at high pressure. Rev. Mineral 37:639–671

    Google Scholar 

  • Stixrude L and Cohen RE (1993) Stability of orthorhombic MgSiO3 perovskite in the earths lower mantle. Nature 364:613–616

    Article  Google Scholar 

  • Tanaka H and Kawai T (1996) Surface structure of reduced SrTiO3(111) observed by scanning tunneling microscopy. Surf. Sci. 365:437–442

    Google Scholar 

  • Tasker PW (1979) The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys. 12:4977–4984

    Google Scholar 

  • Urusov VS (1975) Energetic Crystal Chemistry, Nuka, Moscow; 335 (in Russian)

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalised eigenvalue formalism. Phys. Rev. B. 41:7892–7895

    Google Scholar 

  • Wall A and Price GD (1989) Electrical-conductivity of the lower mantle – a molecular-dynamics simulation of MgSiO3 perovskite. Phys. of Earth and Planet. In. 58:192–204

    Google Scholar 

  • Wall A, Price GD and Parker SC (1986), A computer-simulation of the structure and elastic properties of MgSiO3 perovskite. Mineral. Magaz. 50:693–707

    Google Scholar 

  • Wang ZC, Mei S, Karato S and Wirth R (1999) Grain growth in CaTiO3-perovskite+FeO-wüstite aggregates. Phys. Chem. Miner. 27:11–19

    Google Scholar 

  • Watson GW, Wall A and Parker SC (2000) Atomistic simulation of the effect of temperature and pressure on point defect formation in MgSiO3 perovskite and the stability of CaSiO3 perovskite. J. of Physics-Condensed Matter 12:8427–8438

    Google Scholar 

  • Wright K and Price GD (1993) Computer-simulation of defects and diffusion in perovskites. J. of Geophys. Research-solid Earth 98(B12): 22245–22253

    Google Scholar 

  • Wright K and Price GD (1989) Computer-simulations of iron in magnesium-silcate perovskite. Geophys. Reserch Lett. 16:1399–1402

    Google Scholar 

  • Wykoff RWG (1965) Crystal Structures volume 1, 2nd ed., John Wiley and Sons, New York, US

  • Yamazaki D, Kato T, Yurimoto H, Ohtani E and Toriumi M (2000) Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Int. 119:299–309

    Google Scholar 

  • Yeganeh-Haeri A (1994) Synthesis and re-investigation of the elastic properties of single-crystsal magnesium silicate perovskite. Phys. Earth Planet. Inter. 87:111–121

    Google Scholar 

Download references

Acknowledgements

We wish to thank S. Jacobssen and F. Heidelbach for assistance in collecting the SEM image of the flux-grown MgSiO3 crystal, and D. S. Coombes, F. Corà and K.W. Wright for valuable discussions. Financial support from NERC is gratefully acknowledged (grant No(s): NER/T/S/2001/00855; NER/O/S/2001/01227 and GR9/02072). We are also thankful to EPSRC and NERC for the computer facilities provided at the Royal Institution of Great Britain, University College London, Bath University and the High Performance Computing facilities of the University of Manchester. DPD is grateful for fellowships from the Alexander von Humboldt Stiftung and the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alfredsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfredsson, M., Brodholt, J.P., Dobson, D.P. et al. Crystal morphology and surface structures of orthorhombic MgSiO3 perovskite. Phys Chem Minerals 31, 671–682 (2005). https://doi.org/10.1007/s00269-004-0429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-004-0429-4

Keywords

Navigation