Skip to main content
Log in

Association of BMI with Clinicopathological Features of Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis

  • Scientific Review
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Papillary thyroid cancer (PTC) is the most common subtype of thyroid cancer. The incidence of PTC is rising in tandem with an obesity epidemic. Associations have been demonstrated between increased body mass index (BMI) and worse oncological outcomes in a number of malignancies. However, research on this topic in PTC to date has been inconsistent, often due to limited data. This study aimed to measure the association between BMI and potentially adverse clinicopathological features of PTC.

Methods

A meta-analysis of studies reporting outcomes after surgical treatment of PTC was performed. PubMed, Embase and the Cochrane Library were searched systematically to identify studies which provided data on BMI and clinicopathologic features of PTC. Relevant data were extracted and synthesis performed using adjusted odds ratios where available and crude values when not. Data were analysed by inverse variance using random and fixed effects models.

Results

Data on 35,237 patients from 15 studies met the criteria for inclusion. Obesity was associated with larger tumour size (MD = 0.17 cm [0.05, 0.29]), increased rates of multifocality (OR = 1.41 [1.16, 1.70]), extrathyroidal extension (OR = 1.70 [1.39, 2.07]) and nodal spread (OR = 1.18 [1.07, 1.30]). Associations were more pronounced as BMI increased. There was no association between BMI and bilaterality, vascular invasion or metastatic spread.

Conclusion

Increased BMI is significantly associated with multiple potentially adverse features of PTC. The effect on long-term oncological outcomes requires further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smittenaar CR, Petersen KA, Stewart K, Moitt N (2016) Cancer incidence and mortality projections in the UK until 2035. Br J Cancer 115:1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davies L, Welch HG (2014) Current thyroid cancer trends in the United States. JAMA Otolaryngol Neck Surg 140:317

    Article  Google Scholar 

  3. Sipos JA, Mazzaferri EL (2010) Thyroid cancer epidemiology and prognostic variables. Clin Oncol 22:395–404

    Article  CAS  Google Scholar 

  4. Kitahara CM, Sosa JA (2016) The changing incidence of thyroid cancer. Nat Rev Endocrinol 12:646–653

    Article  PubMed  Google Scholar 

  5. Bertagna F, Treglia G, Piccardo A, Giubbini R (2012) Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. J Clin Endocrinol Metab 97:3866–3875

    Article  CAS  PubMed  Google Scholar 

  6. Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP (2016) Systematic review of trends in the incidence rates of thyroid cancer. Thyroid 26:1541–1552

    Article  PubMed  Google Scholar 

  7. Kitahara CM, Platz EA, Freeman LE et al (2011) Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies. Cancer Epidemiol Biomark Prev 20:464–472

    Article  Google Scholar 

  8. Lengyel E, Makowski L, DiGiovanni J, Kolonin MG (2018) Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends cancer 4:374–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vucenik I, Stains JP (2012) Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci 1271:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ackerman SE, Blackburn OA, Marchildon F, Cohen P (2017) Insights into the link between obesity and cancer. Curr Obes Rep 6:195–203

    Article  PubMed  Google Scholar 

  11. Freedland SJ, Aronson WJ, Kane CJ et al (2004) Impact of obesity on biochemical control after radical prostatectomy for clinically localized prostate cancer: a report by the shared equal access regional cancer hospital database study group. J Clin Oncol 22:446–453

    Article  PubMed  Google Scholar 

  12. Hahn KME, Bondy ML, Selvan M et al (2007) Factors associated with advanced disease stage at diagnosis in a population-based study of patients with newly diagnosed breast cancer. Am J Epidemiol 166:1035–1044

    Article  PubMed  Google Scholar 

  13. Chung YS, Lee JH, Lee YD (2017) Is body mass index relevant to prognosis of papillary thyroid carcinoma? A clinicopathological cohort study. Surg Today 47:506–512

    Article  PubMed  Google Scholar 

  14. Choi JS, Kim EK, Moon HJ, Kwak JY (2014) Higher body mass index may be a predictor of extrathyroidal extension in patients with papillary thyroid microcarcinoma. Endocrine 48:264–271

    Article  CAS  PubMed  Google Scholar 

  15. Kim SK, Woo J-W, Park I et al (2016) Influence of body mass index and body surface area on the behavior of papillary thyroid carcinoma. Thyroid 26:657–666

    Article  PubMed  Google Scholar 

  16. Kwon H, Kim M, Choi YM et al (2015) Lack of associations between body mass index and clinical outcomes in patients with papillary thyroid carcinoma. Endocrinol Metab 30:305

    Article  Google Scholar 

  17. Yu S-T, Chen W, Cai Q et al (2017) Pretreatment BMI is associated with aggressive clinicopathological features of papillary thyroid carcinoma: a multicenter study. Int J Endocrinol 2017:5841942

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao Q, Ming J, Liu C et al (2013) Multifocality and total tumor diameter predict central neck lymph node metastases in papillary thyroid microcarcinoma. Ann Surg Oncol 20:746–752

    Article  PubMed  Google Scholar 

  19. Shah JP, Loree TR, Dharker D et al (1992) Prognostic factors in differentiated carcinoma of the thyroid gland. Am J Surg 164:658–661

    Article  CAS  PubMed  Google Scholar 

  20. Gardner RE, Tuttle RM, Burman KD et al (2000) Prognostic importance of vascular invasion in papillary thyroid carcinoma. Arch Otolaryngol Head Neck Surg 126:309–312

    Article  CAS  PubMed  Google Scholar 

  21. Lin J-D, Hsueh C, Chao T-C (2016) Soft tissue invasion of papillary thyroid carcinoma. Clin Exp Metastasis 33:601–608

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scheumann GF, Gimm O, Wegener G et al (1994) Prognostic significance and surgical management of locoregional lymph node metastases in papillary thyroid cancer. World J Surg 18:559–67

    Article  CAS  PubMed  Google Scholar 

  23. Shamseer L, Moher D, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349:g7647–g7647

    Article  Google Scholar 

  24. Wells G, Shea B, O’Connell D et al (2009) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 21 May 2019

  25. Feng JW, Yang XH, Wu BQ et al (2019) Influence of body mass index on the clinicopathologic features of papillary thyroid carcinoma. Ann Otol Rhinol Laryngol. https://doi.org/10.1177/0003489419834314

    Article  PubMed  Google Scholar 

  26. Wu C, Wang L, Chen W et al (2017) Associations between body mass index and lymph node metastases of patients with papillary thyroid cancer: A retrospective study. Med 96:e6202

    Article  Google Scholar 

  27. Liu Z, Maimaiti Y, Yu P et al (2015) Correlation between body mass index and clinicopathological features of papillary thyroid microcarcinoma. Int J Clin Exp Med 8:16472–16479

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SH, Park HS, Kim KH et al (2015) Correlation between obesity and clinicopathological factors in patients with papillary thyroid cancer. Surg Today 45:723–729

    Article  CAS  PubMed  Google Scholar 

  29. Trésallet C, Seman M, Tissier F et al (2014) The incidence of papillary thyroid carcinoma and outcomes in operative patients according to their body mass indices. Surg 156:1145–1152

    Article  Google Scholar 

  30. Kim HJ, Kim NK, Choi JH et al (2013) Associations between body mass index and clinico-pathological characteristics of papillary thyroid cancer. Clin Endocrinol 78:134–140

    Article  Google Scholar 

  31. Harari A, Endo B, Nishimoto S et al (2012) Risk of advanced papillary thyroid cancer in obese patients. Arch Surg 147:805–811

    Article  PubMed  Google Scholar 

  32. Li CL, Dionigi G, Zhao YS et al (2020) Influence of body mass index on the clinicopathological features of 13,995 papillary thyroid tumors. J Endocrinol Invest. https://doi.org/10.1007/s40618-020-01216-6

    Article  PubMed  Google Scholar 

  33. Zhao S, Jia X, Fan X et al (2019) Association of obesity with the clinicopathological features of thyroid cancer in a large, operative population: a retrospective case-control study. Med. https://doi.org/10.1097/MD.0000000000018213

    Article  PubMed  Google Scholar 

  34. Jin QF, Fang QG, Qi JX, Li P (2019) Impact of BMI on complications and satisfaction in patients with papillary thyroid cancer and lateral neck metastasis. Cancer Control. https://doi.org/10.1177/1073274819853831

    Article  PubMed  PubMed Central  Google Scholar 

  35. Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23:6365–6378

    Article  CAS  PubMed  Google Scholar 

  36. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    Article  CAS  PubMed  Google Scholar 

  37. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  38. Han JM, Kim TY, Jeon MJ et al (2013) Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur J Endocrinol 168:879–886

    Article  CAS  PubMed  Google Scholar 

  39. Xu L, Port M, Landi S et al (2014) Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case-control studies. Thyroid 24:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Renehan AG, Tyson M, Egger M et al (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578

    Article  PubMed  Google Scholar 

  41. Marcello MA, Cunha LL, Batista FA, Ward LS (2014) Obesity and thyroid cancer. Endocr Relat Cancer 21:T255–T271

    Article  CAS  PubMed  Google Scholar 

  42. Engeland A, Tretli S, Akslen LA, Bjørge T (2006) Body size and thyroid cancer in two million Norwegian men and women. Br J Cancer 95:366–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao ZG, Guo XG, Ba CX et al (2012) Overweight, obesity and thyroid cancer risk: a meta-analysis of cohort studies. J Int Med Res 40:2041–2050

    Article  CAS  PubMed  Google Scholar 

  44. Kwon H, Han KD, Park CY (2019) Weight change is significantly associated with risk of thyroid cancer: a nationwide population-based cohort study. Sci Rep 9:1546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Strom SS, Wang X, Pettaway CA et al (2005) Obesity, weight gain, and risk of biochemical failure among prostate cancer patients following prostatectomy. Clin Cancer Res 11:6889–6894

    Article  CAS  PubMed  Google Scholar 

  46. Marcello MA, Cunha LL, Batista FA, Ward LS (2014) Obesity and thyroid cancer. Endocr Relat Cancer 21:255–271

    Article  CAS  Google Scholar 

  47. Fox CS, Pencina MJ, D’Agostino RB et al (2008) Relations of thyroid function to body weight. Cross-sectional and longitudinal observations in a community-based sample. Arch Intern Med 168(6):587

    Article  PubMed  Google Scholar 

  48. Mcleod DSA, Cooper DS, Ladenson PW et al (2014) Prognosis of differentiated thyroid cancer in relation to serum thyrotropin and thyroglobulin antibody status at time of diagnosis. Thyroid 24:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fiore E, Rago T, Provenzale MA et al (2009) Lower levels of TSH are associated with a lower risk of papillary thyroid cancer in patients with thyroid nodular disease: thyroid autonomy may play a protective role. Endocr Relat Cancer 16:1251–1260

    Article  CAS  PubMed  Google Scholar 

  50. Cao R, Brakenhielm E, Wahlestedt C et al (2001) Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci U S A 98:6390–6395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng S-P, Chi C-W, Tzen C-Y et al (2010) Clinicopathologic significance of leptin and leptin receptor expressions in papillary thyroid carcinoma. Surgery 147:847–853

    Article  PubMed  Google Scholar 

  52. Ukkola O, Santaniemi M (2002) Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med 80:696–702

    Article  CAS  PubMed  Google Scholar 

  53. Cheng SP, Liu CL, Hsu YC et al (2013) Expression and biologic significance of adiponectin receptors in papillary thyroid carcinoma. Cell Biochem Biophys 65:203–210

    Article  CAS  PubMed  Google Scholar 

  54. Mitsiades N, Pazaitou-Panayiotou K, Aronis KN et al (2011) Circulating adiponectin is inversely associated with risk of thyroid cancer: in vivo and in vitro studies. J Clin Endocrinol Metab 96:E2023–E2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. J Mol Cell Biol 8:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lai X, Xia Y, Zhang B et al (2017) A meta-analysis of Hashimoto’s thyroiditis and papillary thyroid carcinoma risk. Oncotarget 8:62414–62424

    Article  PubMed  PubMed Central  Google Scholar 

  57. Harvey AE, Lashinger LM, Hursting SD (2011) The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci 1229:45–52

    Article  CAS  PubMed  Google Scholar 

  58. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15:234–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cunha LL, Marcello MA, Ward LS (2014) The role of the inflammatory microenvironment in thyroid carcinogenesis. Endocr Relat Cancer 21:R85–R103

    Article  CAS  PubMed  Google Scholar 

  60. Choi JS, Lee HS, Kim EK et al (2015) The influence of body mass index on the diagnostic performance of pre-operative staging ultrasound in papillary thyroid carcinoma. Clin Endocrinol 83:550–555

    Article  Google Scholar 

  61. Haakinson DJ, Leeds SG, Dueck AC et al (2012) The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol 19:3012–3018. https://doi.org/10.1245/s10434-012-2320-8

    Article  PubMed  Google Scholar 

  62. Kim MR, Kim SS, Huh JE et al (2013) Neck circumference correlates with tumor size and lateral lymph node metastasis in men with small papillary thyroid carcinoma. Korean J Intern Med 28:62–71. https://doi.org/10.3904/kjim.2013.28.1.62

    Article  PubMed  Google Scholar 

  63. Cespedes Feliciano EM, Kroenke CH, Caan BJ (2018) The obesity paradox in cancer: how important is muscle? Annu Rev Nutr 38:357–379

    Article  CAS  PubMed  Google Scholar 

  64. Perros P, Boelaert K, Colley S et al (2014) Guidelines for the management of thyroid cancer. Clin Endocrinol 81:1–122

    Article  CAS  Google Scholar 

  65. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bilimoria KY, Bentrem DJ, Ko CY et al (2007) Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 246:375–384

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farag M, Ibraheem K, Garstka ME et al (2019) Thyroid surgery and obesity: cohort study of surgical outcomes and local specific complications. Am J Surg 217:142–145

    Article  PubMed  Google Scholar 

  68. Blanchard C, Bannani S, Pattou F et al (2019) Impact of body mass index on post-thyroidectomy morbidity. Head Neck. https://doi.org/10.1002/hed.25773

    Article  PubMed  Google Scholar 

  69. Meltzer C, Hull M, Sundang A, Adams JL (2019) Association between annual surgeon total thyroidectomy volume and transient and permanent complications. JAMA Otolaryngol Head Neck Surg. https://doi.org/10.1001/jamaoto.2019.1752

    Article  PubMed  PubMed Central  Google Scholar 

  70. Adam MA, Thomas S, Youngwirth L et al (2017) Is there a minimum number of thyroidectomies a surgeon should perform to optimize patient outcomes? Ann Surg 265:402–407

    Article  PubMed  Google Scholar 

  71. Aspinall S, Oweis D, Chadwick D (2019) Effect of surgeons’ annual operative volume on the risk of permanent hypoparathyroidism, recurrent laryngeal nerve palsy and haematoma following thyroidectomy: analysis of United Kingdom registry of endocrine and thyroid surgery (UKRETS). Langenbeck’s Arch Surg 404:421–430

    Article  CAS  Google Scholar 

  72. Keane E, Francis EC, Catháin EO, Rowley H (2017) The role of race in thyroid cancer: systematic review. J Laryngol Otol 131:480–486

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. O’Neill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, R.J., Abd Elwahab, S., Kerin, M.J. et al. Association of BMI with Clinicopathological Features of Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis. World J Surg 45, 2805–2815 (2021). https://doi.org/10.1007/s00268-021-06193-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-021-06193-2

Navigation