Skip to main content

Impact of Bypass Flow Assessment on Long-Term Outcomes in Patients with Chronic Limb-Threatening Ischemia

Abstract

Background

Transit time flow meter (TTFM) allows quick and accurate intraoperative graft assessment. The main study goal is to evaluate the influence of graft flow measurements on long-term clinical outcomes in patients with chronic limb-threatening ischemia (CLTI) undergoing bellow the knee (BTK) vein bypass surgery.

Methods

Between January 1st, 1999 and January 1st, 2006, 976 CLTI consecutive patients underwent lower extremity bypass surgery. When applying the exclusion criteria, 249 patients were included in the final analysis. Control measurements were performed at the end of the procedure. Patients were divided according to the mean (more/less than 100 ml/min) and diastolic graft flow (more/less than 40 ml/min) values in four groups. The primary endpoints were a major adverse limb event (male) and primary graft patency.

Results

After the median follow-up of 68 months, a group with the mean graft flow below 100 ml/min and the diastolic graft flow below 40 ml/min had the highest rates of male (χ2 = 36.60, DF = 1, P < 0.01, log-rank test) and the worst primary graft patency (χ2 = 53.05, DF = 1, P < 0.01, log-rank test).

Conclusion

In patients with CLTI undergoing BTK vein bypass surgery, TTFM parameters, especially combined impact of mean graft flow less than 100 ml/min and diastolic graft flow less than 40 ml/min, were associated with an increased risk of poor long-term male and primary graft patency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Fowkes FG, Rudan D, Rudan I et al (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382:1329–1340

    PubMed  Google Scholar 

  2. Abu Dabrh AM, Steffen MW, Undavalli C et al (2015) The natural history of untreated severe or critical limb ischemia. J Vasc Surg 62:1642–1651

    PubMed  Google Scholar 

  3. van Haelst ST, Koopman C, den Ruijter HM et al (2018) Cardiovascular and all-cause mortality in patients with intermittent claudication and critical limb ischaemia. Br J Surg 105:252–261

    PubMed  Google Scholar 

  4. Baubeta Fridh E, Andersson M, Thuresson M et al (2017) Amputation rates, mortality, and pre-operative comorbidities in patients revascularised for intermittent claudication or critical limb ischaemia: a population based study. Eur J Vasc Endovasc Surg 54:480–486

    CAS  PubMed  Google Scholar 

  5. Dormandy JA, Rutherford RB (2000) TASC working group—Management of peripheral arterial disease (PAD). J Vasc Surg 31(Suppl 1):S233–S236

    Google Scholar 

  6. Uhl C, Hock C, Ayx I et al (2016) Tibial and peroneal bypasses in octogenarians and nonoctogenarians with critical limb ischemia. J Vasc Surg 63(6):1555–62

    PubMed  Google Scholar 

  7. Schanzer A, Hevelone N, Owens CD et al (2007) Technical factors affecting autogenous vein graft failure: observations from a large multicenter trial. J Vasc Surg 46:1180–1190

    PubMed  Google Scholar 

  8. Wengerter KR, Yang PM, Veith FJ et al (1992) A twelve-year experience with the popliteal-to-distal artery bypass: the significance and management of proximal disease. J Vasc Surg 15:143–149

    CAS  PubMed  Google Scholar 

  9. Albers M, Romiti M, Brochado-Neto FC et al (2006) Meta-analysis of popliteal-to-distal vein bypass grafts for critical ischemia. J Vasc Surg 43:498–503

    PubMed  Google Scholar 

  10. Blankensteijn JD, Gertler JP, Brewster DC et al (1995) Intraoperative determinants of infrainguinal bypass graft patency: a prospective study. Eur J Vasc Endovasc Surg 9:375–382

    CAS  PubMed  Google Scholar 

  11. Tordoir JH, van der Plas JP, Jacobs MJ et al (1993) Factors determining the outcome of crural and pedal revascularisation for critical limb ischaemia. Eur J Vasc Surg 7:82–86

    CAS  PubMed  Google Scholar 

  12. Rutherford RB, Jones DN, Bergentz SE et al (1998) Factors affecting the patency of infrainguinal bypass. J Vasc Surg 8:236–246

    Google Scholar 

  13. Bandyk DF, Jorgensen RA, Towne JB (1986) Intraoperative assessment of in situ saphenous vein arterial grafts using pulsed Doppler spectral analysis. Arch Surg 121:292–299

    CAS  PubMed  Google Scholar 

  14. Rzucidlo EM, Walsh DB, Powell RJ et al (2002) Prediction of early graft failure with intraoperative completion duplex ultrasound scan. J Vasc Surg 36:975–981

    PubMed  Google Scholar 

  15. Bandyk DF, Mills JL, Gahtan V et al (1994) Intraoperative duplex scanning of arterial reconstructions: fate of repaired and unrepaired defects. J Vasc Surg 20:426–432

    CAS  PubMed  Google Scholar 

  16. Johnson BL, Bandyk DF, Back MR et al (2000) Intraoperative duplex monitoring of infrainguinal vein bypass procedures. J Vasc Surg 31:678–690

    CAS  PubMed  Google Scholar 

  17. Papanicolaou G, Aziz I, Yellin AE et al (1996) Intraoperative color duplex scanning for infrainguinal vein grafts. Ann Vasc Surg 10:347–355

    CAS  PubMed  Google Scholar 

  18. Miller A, Marcaccio EJ, Tannenbaum GA et al (1993) Comparison of angioscopy and angiography for monitoring infrainguinal bypass vein grafts: results of a prospective randomized trial. J Vasc Surg 17:382–398

    CAS  PubMed  Google Scholar 

  19. Alback A, Makisalo H, Nordin A, Lepantalo M et al (1996) Validity and reproducibility of transit time flowmetry. Ann Chir Gynaecol 85(4):325–331

    CAS  PubMed  Google Scholar 

  20. Di Giammarco G, Pano M, Cirmeni S et al (2006) Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J Thorac Cardiovasc Surg 132:468–474

    PubMed  Google Scholar 

  21. Sonmez B, Arbatli H, Tansal S et al (2003) Real-time patency control with thermal coronary angiography in 1401 coronary artery bypass grafting patients. Eur J Cardio-thorac Surg 24:961–966

    Google Scholar 

  22. Hirotani T, Kameda T, Shirota S et al (2001) An evaluation of the intraoperative transit time measurements of coronary bypass flow. Eur J Cardiothorac Surg 19:848–852

    CAS  PubMed  Google Scholar 

  23. D’Ancona G, Karamanoukian HL, Bergsland J (2001) Is intraoperative measurement of coronary blood flow a good predictor of graft patency? Eur J Cardio-thorac Surg 20:1075–1076

    Google Scholar 

  24. Dean RH, Yao JS, Stanton PE et al (1976) Proceedings: prognostic indicators in femoropopliteal reconstructions. J Cardiovasc Surg (Torino) 17(1):81–82

    CAS  Google Scholar 

  25. Sonnenfeld T, Cronestrand R, Nowak J (1979) Leg haemodynamics during reconstructive vascular surgery. Br J Surg 66:586–589

    CAS  PubMed  Google Scholar 

  26. Lundell A, Bergqvist D (1993) Prediction of early graft occlusion in femoropopliteal and femorodistal reconstruction by measurement of volume flow with a transit time flowmeter and calculation of peripheral resistance. Eur J Vasc Surg 7:704–708

    CAS  PubMed  Google Scholar 

  27. Davies AH, Magee TR, Baird RN et al (1993) Intraoperative measurement of vascular graft resistance as a predictor of early outcome. Br J Surg 80:854–857

    CAS  PubMed  Google Scholar 

  28. Nicholls SC, Kohler TR, Martin RL et al (1986) Diastolic flow as a predictor of arterial stenosis. J Vasc Surg 3(3):498–501

    CAS  PubMed  Google Scholar 

  29. Bandyk DF, Schmitt DD, Seabrook GR et al (1989) Monitoring functional patency of in situ saphenous vein bypasses: the impact of a surveillance protocol and elective revision. J Vasc Surg 9(2):286–296

    CAS  PubMed  Google Scholar 

  30. Rutherford RB, Baker JD, Ernst C et al (1997) Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg 26(3):517–538

    CAS  PubMed  Google Scholar 

  31. von Elm E, Altman DG, Egger M et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 4(10):e296

    Google Scholar 

  32. Bandyk DF, Cato RF, Towne JB (1985) A low flow velocity predicts failure of femoropopliteal and femorotibial bypass grafts. Surgery 98(4):799–809

    CAS  PubMed  Google Scholar 

  33. Armstrong EJ, Chen DC, Westin GG et al (2014) Adherence to guideline-recommended therapy is associated with decreased major adverse cardiovascular events and major adverse limb events among patients with peripheral arterial disease. J Am Heart Assoc 3:e000697

    PubMed  PubMed Central  Google Scholar 

  34. Seeger JM, Pretus HA, Carlton LC et al (1999) Potential predictors of outcome in patients with tissue loss who undergo infrainguinal vein bypass grafting. J Vasc Surg 30:427–435

    CAS  PubMed  Google Scholar 

  35. Nguyen LL, Moneta GL, Conte MS, Bandyk DF, Clowes AW, Seely BL (2006) Prospective multicenter study of quality of life before and after lower extremity vein bypass in 1404 patients with critical limb ischemia. J Vasc Surg 44:977e83 (discussion:983-4)

    Google Scholar 

  36. Cooper GG, Austin C, Fitzsimmons E et al (1990) Outflow resistance and early occlusion of infrainguinal bypass grafts. Eur J Vasc Surg 4(3):279–283

    CAS  PubMed  Google Scholar 

  37. Little JM, Shell AGR, Loewenthal J et al (1968) Prognostic value of intraoperative blood flow measurements in femoropopliteal bypass vein grafts. Lancet 292:648–651

    Google Scholar 

  38. Terry HJ, Allan JS, Taylor GW (1972) The relationship between blood flow and failure of femoropopliteal reconstructive arterial surgery. Br J Surg 59:549–551

    CAS  PubMed  Google Scholar 

  39. Bergmark C, Johansson G, Olofsson P et al (1991) Femoro-popliteal and femoro-distal bypass: a comparison between in situ and reversed technique. J Cardiovasc Surg (Torino) 32(1):117–120

    CAS  Google Scholar 

  40. Junger M, Chapman BL, Underwood CJ et al (1984) A comparison between two types of waveform analysis in patients with multisegmental arterial disease. Br J Surg 71(5):345–348

    CAS  PubMed  Google Scholar 

  41. Bandyk DF, Johnson BL, Gupta AK et al (1996) Nature and management of duplex abnormalities encountered during infrainguinal vein bypass grafting. J Vasc Surg 24:430–438

    CAS  PubMed  Google Scholar 

  42. Cull DL, Gregory RT, Wheeler JR et al (1992) Duplex scanning for the intraoperative assessment of infrainguinal arterial reconstruction: a useful tool? Ann Vasc Surg 6(1):20–24

    CAS  PubMed  Google Scholar 

  43. Conte M, Bradbury A, Kolh P et al (2019) Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg 58:S1–S109

    PubMed  Google Scholar 

Download references

Acknowledgements

The presented article is a part of a scientific research project (No 175008) supported by the Ministry of Education and Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Zlatanovic.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cinara, I., Zlatanovic, P., Sladojevic, M. et al. Impact of Bypass Flow Assessment on Long-Term Outcomes in Patients with Chronic Limb-Threatening Ischemia. World J Surg 45, 2280–2289 (2021). https://doi.org/10.1007/s00268-021-06046-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-021-06046-y