Skip to main content

Expression of Pancreatic Stone Protein is Unaffected by Trauma and Subsequent Surgery in Burn Patients

Abstract

Background

Altered levels of pro-inflammatory markers secondary to trauma or surgery present a major problem to physicians in being prone to interfere with the clinical identification of infectious events.

Methods

Patients admitted to Zurich Burn Center between May 2015 and October 2018 with burns ≥10% total body surface area (TBSA) and without infection. Longitudinal analysis of the time course of PSP and routine inflammatory biomarkers [procalcitonin (PCT), C-reactive protein (CRP) and white blood cells (WBC)] over two days after (a) trauma with initial debridement and (b) subsequent burn surgeries was performed. The influence of TBSA, abbreviated burn severity index (ABSI), age and length of operation was investigated using a linear mixed effect regression model.

Results

Sixty-six patients (15 female) were included with a mean age of 45.5 ± 18.3 years, median TBSA of 22% (IQR 17) and mean ABSI score 6.8 ± 2.7. PSP was the only biomarker that showed no association with any of the baseline characteristics. Additionally, PSP serum levels did not change over time neither after the burn trauma (p = 0.832) nor after secondary procedures (p = 0.113), while PCT levels increased significantly after the trauma (p < 0.001). Similarly, CRP serum levels were elevated significantly after both trauma and surgery (p < 0.001), whereas WBC values demonstrated a significant decline after the trauma (p < 0.001).

Conclusion

Established biomarkers (WBC, CRP and PCT) demonstrate decisive alterations after tissue destruction caused by burn injuries and subsequent surgical interventions. The robustness of PSP serum levels toward these inflammatory insults is a quality criterion for an upcoming sepsis biomarker.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Lin E, Calvano SE, Lowry SF (2000) Inflammatory cytokines and cell response in surgery. Surgery 127(2):117–126

    CAS  PubMed  Google Scholar 

  2. 2.

    Ni Choileain N, Redmond HP (2006) Cell response to surgery. Arch Surg 141(11):1132–1140

    PubMed  Google Scholar 

  3. 3.

    Foglar C, Lindsey RW (1998) C-reactive protein in orthopedics. Orthopedics 21(6):687–691 Quiz 92–3

    CAS  PubMed  Google Scholar 

  4. 4.

    Jeschke MG, Finnerty CC, Kulp GA, Kraft R, Herndon DN (2013) Can we use C-reactive protein levels to predict severe infection or sepsis in severely burned patients? Int J Burns Trauma 3(3):137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Santonocito C, De Loecker I, Donadello K, Moussa MD, Markowicz S, Gullo A et al (2014) C-reactive protein kinetics after major surgery. Anesth Analg 119(3):624–629

    CAS  PubMed  Google Scholar 

  6. 6.

    Kehinde MO, Akinyanju OO (1988) The pattern of leucocyte response to surgical trauma in the African Negro. Clin Lab Haematol 10(3):285–293

    CAS  PubMed  Google Scholar 

  7. 7.

    Cabral L, Afreixo V, Meireles R, Vaz M, Marques M, Tourais I et al (2018) Procalcitonin kinetics after burn injury and burn surgery in septic and non-septic patients—a retrospective observational study. BMC Anesthesiol 18(1):122

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Eggimann P, Que YA, Rebeaud F (2019) Measurement of pancreatic stone protein in the identification and management of sepsis. Biomark Med 13(2):135–145

    CAS  PubMed  Google Scholar 

  9. 9.

    Graf R, Schiesser M, Lussi A, Went P, Scheele GA, Bimmler D (2002) Coordinate regulation of secretory stress proteins (PSP/reg, PAP I, PAP II, and PAP III) in the rat exocrine pancreas during experimental acute pancreatitis. J Surg Res 105(2):136–144

    CAS  PubMed  Google Scholar 

  10. 10.

    Keel M, Harter L, Reding T, Sun LK, Hersberger M, Seifert B et al (2009) Pancreatic stone protein is highly increased during posttraumatic sepsis and activates neutrophil granulocytes. Crit Care Med 37(5):1642–1648

    PubMed  Google Scholar 

  11. 11.

    Klein HJ, Csordas A, Falk V, Slankamenac K, Rudiger A, Schonrath F et al (2015) Pancreatic stone protein predicts postoperative infection in cardiac surgery patients irrespective of cardiopulmonary bypass or surgical technique. PLoS ONE 10(3):e0120276

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Garcia de Guadiana-Guadiana L, Berger M, Jimenez-Santos E, Rebollo-Acebes S, Jimenez-Sanchez R, Esteban-Torrella P et al (2017) Pancreatic stone protein and soluble CD25 for infection and sepsis in an emergency department. Eur J Clin Invest 47(4):297–304

    Google Scholar 

  13. 13.

    Schlapbach LJ, Graf R, Woerner A, Fontana M, Zimmermann-Baer U, Glauser D et al (2013) Pancreatic stone protein as a novel marker for neonatal sepsis. Intensive Care Med 39(4):754–763

    CAS  Google Scholar 

  14. 14.

    Que YA, Delodder F, Guessous I, Graf R, Bain M, Calandra T et al (2012) Pancreatic stone protein as an early biomarker predicting mortality in a prospective cohort of patients with sepsis requiring ICU management. Crit Care 16(4):R114

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Llewelyn MJ, Berger M, Gregory M, Ramaiah R, Taylor AL, Curdt I et al (2013) Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit Care 17(2):R60

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Klein HJ, Niggemann P, Buehler PK, Lehner F, Schweizer R, Rittirsch D, et al. (2020) Pancreatic stone protein predicts sepsis in severely burned patients irrespective of trauma severity: A monocentric observational study. Ann Surg. [E-pub. Ahead of print]

  17. 17.

    Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–60

    PubMed  Google Scholar 

  18. 18.

    Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36(5):309

    PubMed  Google Scholar 

  19. 19.

    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):801–810

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yunus I, Fasih A, Wang Y (2018) The use of procalcitonin in the determination of severity of sepsis, patient outcomes and infection characteristics. PLoS ONE 13(11):e0206527

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fukuzumi N, Osawa K, Sato I, Iwatani S, Ishino R, Hayashi N et al (2016) Age-specific percentile-based reference curve of serum procalcitonin concentrations in Japanese preterm infants. Sci Rep 6:23871

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Schlapbach LJ, Giannoni E, Wellmann S, Stocker M, Ammann RA, Graf R (2015) Normal values for pancreatic stone protein in different age groups. BMC Anesthesiol 15:168

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wyczalkowska-Tomasik A, Czarkowska-Paczek B, Zielenkiewicz M, Paczek L (2016) Inflammatory markers change with age, but do not Fall beyond reported normal ranges. Arch Immunol Ther Exp (Warsz) 64(3):249–254

    CAS  Google Scholar 

  24. 24.

    McGrath CR, Hitchcock DC, van Assendelft OW (1982) (1982) Total white blood cell counts for persons ages 1–74 years with differential leukocyte counts for adults ages 25–74 years: United States, 1971–75. Vital Health Stat 11 220:1–36

    Google Scholar 

  25. 25.

    Tang Y, Fung E, Xu A, Lan HY (2017) C-reactive protein and ageing. Clin Exp Pharmacol Physiol 44(1):9–14

    CAS  PubMed  Google Scholar 

  26. 26.

    von Heimburg D, Stieghorst W, Khorram-Sefat R, Pallua N (1998) Procalcitonin—a sepsis parameter in severe burn injuries. Burns 24(8):745–750

    Google Scholar 

  27. 27.

    Ciriello V, Gudipati S, Stavrou PZ, Kanakaris NK, Bellamy MC, Giannoudis PV (2013) Biomarkers predicting sepsis in polytrauma patients: current evidence. Injury 44(12):1680–1692

    PubMed  Google Scholar 

  28. 28.

    Sachse C, Machens HG, Felmerer G, Berger A, Henkel E (1999) Procalcitonin as a marker for the early diagnosis of severe infection after thermal injury. J Burn Care Rehabil 20(5):354–360

    CAS  PubMed  Google Scholar 

  29. 29.

    Meisner M, Adina H, Schmidt J (2006) Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit Care 10(1):R1

    PubMed  Google Scholar 

  30. 30.

    Kundes MF, Kement M (2019) Value of procalcitonin levels as a predictive biomarker for sepsis in pediatric patients with burn injuries. Niger J Clin Pract 22(7):881–884

    CAS  PubMed  Google Scholar 

  31. 31.

    Meisner M, Tschaikowsky K, Hutzler A, Schick C, Schuttler J (1998) Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med 24(7):680–684

    CAS  PubMed  Google Scholar 

  32. 32.

    Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB et al (2008) Pathophysiologic response to severe burn injury. Ann Surg 248(3):387–401

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Valvis SM, Waithman J, Wood FM, Fear MW, Fear VS (2015) The immune response to skin trauma is dependent on the etiology of injury in a mouse model of burn and excision. J Invest Dermatol 135(8):2119–2128

    CAS  PubMed  Google Scholar 

  34. 34.

    Reding T, Palmiere C, Pazhepurackel C, Schiesser M, Bimmler D, Schlegel A et al (2017) The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII. Oncotarget 8(18):30162–30174

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Honore PM, Spapen HD. The struggle to differentiate inflammation from infection in severely burned patients: time to send better biomarkers into the arena? Critical care (London, England). 2016;20.

  36. 36.

    Belba MK, Petrela EY, Belba AG (2017) Epidemiology and outcome analysis of sepsis and organ dysfunction/failure after burns. Burns 43(6):1335–1347

    PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from the Gottfried and Julia Bangerter-Rhyner Foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Holger J. Klein.

Ethics declarations

Conflict of interest

Rolf Graf is inventor of an assay covered by Patent No: EP 2185937 B2 "Method for Assaying sepsis in Humans", which is owned by the University of Zurich (Zurich, Switzerland). This does not alter the authors' adherence to all the policies on sharing data and materials.

Ethical approval

Ethics approval was obtained from the Ethics committee of the University of Zurich, Switzerland on April 20th 2015 (KEK-ZH-No: 2014-0631).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PPTX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klein, H.J., Buehler, P.K., Niggemann, P. et al. Expression of Pancreatic Stone Protein is Unaffected by Trauma and Subsequent Surgery in Burn Patients. World J Surg 44, 3000–3009 (2020). https://doi.org/10.1007/s00268-020-05589-w

Download citation