Skip to main content

Advertisement

Log in

Enteral Diet Enriched with ω-3 Fatty Acid Improves Oxygenation After Thoracic Esophagectomy for Cancer: A Randomized Controlled Trial

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Although the anti-inflammatory effects of immunomodulating diets (IMDs) have recently attracted attention, the efficacy of enteral feeding of such diets after radical surgery remains controversial. Thus, we conducted a new prospective, randomized controlled study to elucidate any beneficial effect of an IMD containing eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) in patients undergoing radical esophagectomy for thoracic esophageal cancer.

Methods

From November 2009 to July 2011, 87 consecutive patients were randomized to receive either an IMD enriched with EPA, GLA, and antioxidants (n = 42) or a standard isocaloric, isonitrogenous diet (control group, n = 45) after esophagectomy with radical lymphadenectomy. The primary outcome measure was changes in the oxygenation status (PaO2/FIO2 ratio), and the secondary outcome measures were body composition, inflammation-related factors, coagulation markers, cholesterol concentrations, and major clinical outcomes.

Results

Oxygenation was significantly better on postoperative days (PODs) 4, 6, and 8 in the IMD than control group (366.5 ± 63.3 vs. 317.3 ± 58.8, P = 0.001; 361.5 ± 52.6 vs. 314.0 ± 53.2, P < 0.001; 365.4 ± 71.2 vs. 315.2 ± 56.9, P = 0.001, respectively). Changes in the ratio of body weight on PODs 14 and 21 and lean body weight on POD 21 were significantly greater in the IMD than control group. No significant differences were observed in other measures.

Conclusions

An enteral IMD enriched with EPA and GLA improved oxygenation and maintained the body composition of patients undergoing radical esophagectomy, indicating the potential efficacy of such a diet after esophagectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kooguchi K, Kobayashi A, Kitamura Y et al (2002) Elevated expression of inducible nitric oxide synthase and inflammatory cytokines in the alveolar macrophages after esophagectomy. Crit Care Med 30:71–76

    Article  CAS  PubMed  Google Scholar 

  2. Lin E, Calvano SE, Lowry SF (2000) Inflammatory cytokines and cell response in surgery. Surgery 127:117–126

    Article  CAS  PubMed  Google Scholar 

  3. Reid PT, Donnelly SC, MacGregor IR et al (2000) Pulmonary endothelial permeability and circulating neutrophil-endothelial markers in patients undergoing esophagogastrectomy. Crit Care Med 28:3161–3165

    Article  CAS  PubMed  Google Scholar 

  4. Wright CD, Kucharczuk JC, O’Brien SM et al (2009) Predictors of major morbidity and mortality after esophagectomy for esophageal cancer: a society of thoracic surgeons general thoracic surgery database risk adjustment model. J Thorac Cardiovasc Surg 137:587–596

    Article  PubMed  Google Scholar 

  5. Fujita T, Daiko H, Nishimura M (2012) Early enteral nutrition reduces the rate of life-threatening complications after thoracic esophagectomy in patients with esophageal cancer. Eur Surg Res 48:79–84

    Article  CAS  PubMed  Google Scholar 

  6. Alexander JW (1998) Immunonutrition: the role of omega-3 fatty acids. Nutrition 14:627–633

    Article  CAS  PubMed  Google Scholar 

  7. Grimble RF (1998) Nutritional modulation of cytokine biology. Nutrition 14:634–640

    Article  CAS  PubMed  Google Scholar 

  8. Murray MJ, Kumar M, Gregory TJ et al (1995) Select dietary fatty acids attenuate cardiopulmonary dysfunction during acute lung injury in pigs. Am J Physiol 269:H2090–H2099

    CAS  PubMed  Google Scholar 

  9. Mancuso P, Whelan J, DeMichele SJ et al (1997) Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats. Crit Care Med 25:1198–1206

    Article  CAS  PubMed  Google Scholar 

  10. Palombo JD, DeMichele SJ, Boyce PJ et al (1999) Effect of short-term enteral feeding with eicosapentaenoic and gamma-linolenic acids on alveolar macrophage eicosanoid synthesis and bactericidal function in rats. Crit Care Med 27:1908–1915

    Article  CAS  PubMed  Google Scholar 

  11. Gadek JE, DeMichele SJ, Karlstad MD et al (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27:1409–1420

    Article  CAS  PubMed  Google Scholar 

  12. Pacht ER, DeMichele SJ, Nelson JL et al (2003) Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome. Crit Care Med 31:491–500

    Article  CAS  PubMed  Google Scholar 

  13. Singer P, Theilla M, Fisher H et al (2006) Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 34:1033–1038

    Article  CAS  PubMed  Google Scholar 

  14. Pontes-Arruda A, Aragao AM, Albuquerque JD (2006) Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 34:2325–2333

    Article  CAS  PubMed  Google Scholar 

  15. Pontes-Arruda A, Martins LF, de Lima SM et al (2011) Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid and antioxidants in the early treatment of sepsis: results from a multicenter, prospective, randomized, double-blinded, controlled study: the INTERSEPT study. Crit Care 15:R144

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stapleton RD, Martin TR, Weiss NS et al (2011) A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med 39:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rice TW, Wheeler AP, Thompson BT et al (2011) Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 306:1574–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grau-Carmona T, Moran-Garcia V, Garcia-de-Lorenzo A et al (2011) Effect of an enteral diet enriched with eicosapentaenoic acid, gamma-linolenic acid and anti-oxidants on the outcome of mechanically ventilated, critically ill, septic patients. Clin Nutr 30:578–584

    Article  CAS  PubMed  Google Scholar 

  19. Ryan AM, Reynolds JV, Healy L et al (2009) Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Ann Surg 249:355–363

    Article  PubMed  Google Scholar 

  20. Sultan J, Griffin SM, Di Franco F et al (2012) Randomized clinical trial of omega-3 fatty acid-supplemented enteral nutrition versus standard enteral nutrition in patients undergoing oesophagogastric cancer surgery. Br J Surg 99:346–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakurai Y, Masui T, Yoshida I et al (2007) Randomized clinical trial of the effects of perioperative use of immune-enhancing enteral formula on metabolic and immunological status in patients undergoing esophagectomy. World J Surg 31:2150–2157 discussion 2158-2159

    Article  PubMed  Google Scholar 

  22. Takeuchi H, Ikeuchi S, Kawaguchi Y et al (2007) Clinical significance of perioperative immunonutrition for patients with esophageal cancer. World J Surg 31:2160–2167

    Article  PubMed  Google Scholar 

  23. Osugi H, Takemura M, Lee S et al (2005) Thoracoscopic esophagectomy for intrathoracic esophageal cancer. Ann Thorac Cardiovasc Surg 11:221–227

    PubMed  Google Scholar 

  24. Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85:109–117

    Article  CAS  PubMed  Google Scholar 

  25. Staal-van den Brekel AJ, Dentener MA, Schols AM et al (1995) Increased resting energy expenditure and weight loss are related to a systemic inflammatory response in lung cancer patients. J Clin Oncol 13:2600–2605

    Article  CAS  PubMed  Google Scholar 

  26. Falconer JS, Fearon KC, Plester CE et al (1994) Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kotler DP (2000) Cachexia. Ann Intern Med 133:622–634

    Article  CAS  PubMed  Google Scholar 

  28. Tracey KJ, Morgello S, Koplin B et al (1990) Metabolic effects of cachectin/tumor necrosis factor are modified by site of production. Cachectin/tumor necrosis factor-secreting tumor in skeletal muscle induces chronic cachexia, while implantation in brain induces predominantly acute anorexia. J Clin Invest 86:2014–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Price SA, Tisdale MJ (1998) Mechanism of inhibition of a tumor lipid-mobilizing factor by eicosapentaenoic acid. Cancer Res 58:4827–4831

    CAS  PubMed  Google Scholar 

  30. Wigmore SJ, Fearon KC, Maingay JP et al (1997) Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci Lond 92:215–221

    Article  CAS  PubMed  Google Scholar 

  31. Lee HN, Surh YJ (2012) Therapeutic potential of resolvins in the prevention and treatment of inflammatory disorders. Biochem Pharmacol 84:1340–1350

    Article  CAS  PubMed  Google Scholar 

  32. Xu ZZ, Zhang L, Liu T et al (2010) Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 16:592–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arita M, Yoshida M, Hong S et al (2005) Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci U S A 102:7671–7676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li C, Bo L, Liu W et al (2015) Enteral immunomodulatory diet (omega-3 fatty acid, gamma-linolenic acid and antioxidant supplementation) for acute lung injury and acute respiratory distress syndrome: an updated systematic review and meta-analysis. Nutrients 7:5572–5585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santacruz CA, Orbegozo D, Vincent JL et al (2015) Modulation of dietary lipid composition during acute respiratory distress syndrome: systematic review and meta-analysis. J Parenter Enteral Nutr 39:837–846

    Article  Google Scholar 

  36. Zhu D, Zhang Y, Li S et al (2014) Enteral omega-3 fatty acid supplementation in adult patients with acute respiratory distress syndrome: a systematic review of randomized controlled trials with meta-analysis and trial sequential analysis. Intensive Care Med 40:504–512

    Article  CAS  PubMed  Google Scholar 

  37. Di Stasi D, Bernasconi R, Marchioli R et al (2004) Early modifications of fatty acid composition in plasma phospholipids, platelets and mononucleates of healthy volunteers after low doses of n-3 polyunsaturated fatty acids. Eur J Clin Pharmacol 60:183–190

    Article  PubMed  Google Scholar 

  38. Osugi H, Takemura M, Higashino M et al (2003) A comparison of video-assisted thoracoscopic oesophagectomy and radical lymph node dissection for squamous cell cancer of the oesophagus with open operation. Br J Surg 90:108–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This trial was supported by Grants-in-Aid for scientific research from the Japan Society for Parenteral and Enteral Nutrition. The authors appreciate the Second Surgical Department of the Osaka City University Hospital for their cooperation during the study. Particularly, they thank K. Mori, M. Okawa, Y. Niwa, R. Hashiba, K. Gyobu, and S. Shinjo for help with patient recruitment and data collection and E. Edagawa for patient randomization. They also thank Y. Nakamura and G. Oka for their excellent work in the assessment and analysis of body composition.

Funding

The authors were personally salaried by their institutions during the period of writing. The funding source had no role in the study design, data collection, data interpretation, data analysis, or writing of the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Matsuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

UMIN clinical trials registry—UMIN000002659.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, Y., Habu, D., Lee, S. et al. Enteral Diet Enriched with ω-3 Fatty Acid Improves Oxygenation After Thoracic Esophagectomy for Cancer: A Randomized Controlled Trial. World J Surg 41, 1584–1594 (2017). https://doi.org/10.1007/s00268-017-3893-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-017-3893-y

Keywords

Navigation