Skip to main content
Log in

Interaction of Age at Diagnosis with Transcriptional Profiling in Papillary Thyroid Cancer

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Age is an important prognostic factor for papillary thyroid cancer (PTC). However, little is known about why advanced age is associated with poor prognosis. The study investigated the changes in transcriptional profiling related to age.

Methods

RNA sequencing data of PTC samples were retrieved from The Cancer Genome Atlas data portal. Spearman’s correlation was used to test the association between age and gene expression. Correlation in the same direction to disease severity was considered functionally relevant. Functional enrichment analysis and pathway annotations were performed.

Results

There was no correlation between age and thyroid-specific genes, except for a weak, negative association between age and TSHR expression. Among 272 genes with a positive association between gene expression and age, the most prominent alteration was metabolic pathways, particularly glycolysis. Among 482 genes with a negative association between gene expression and age, the most enriched biological process was immune-related functions, particularly natural killer cell-mediated cytotoxicity.

Conclusions

Our analysis characterized the age-associated molecular landscape in PTC. Metabolic alterations and immune dysregulation are probable mechanisms involving in worse prognosis in older patients with PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cramer JD, Fu P, Harth KC et al (2010) Analysis of the rising incidence of thyroid cancer using the surveillance, epidemiology and end results national cancer data registry. Surgery 148:1147–1152

    Article  PubMed  Google Scholar 

  2. Davies L, Welch HG (2014) Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 140:317–322

    Article  PubMed  Google Scholar 

  3. Grogan RH, Kaplan SP, Cao H et al (2013) A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery 154:1436–1446

    Article  PubMed  Google Scholar 

  4. Ito Y, Miyauchi A, Kihara M et al (2014) Prognostic significance of young age in papillary thyroid carcinoma: analysis of 5733 patients with 150 months’ median follow-up. Endocr J 61:491–497

    Article  PubMed  Google Scholar 

  5. Orosco RK, Hussain T, Brumund KT et al (2015) Analysis of age and disease status as predictors of thyroid cancer-specific mortality using the surveillance, epidemiology, and end results database. Thyroid 25:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ganly I, Nixon IJ, Wang LY et al (2015) Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid 25:1106–1114

    Article  PubMed  PubMed Central  Google Scholar 

  7. Colonna M, Uhry Z, Guizard AV et al (2015) Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol 39:511–518

    Article  CAS  PubMed  Google Scholar 

  8. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133

    Article  PubMed  Google Scholar 

  9. McLeod DS, Carruthers K, Kevat DA (2015) Optimal differentiated thyroid cancer management in the elderly. Drugs Aging 32:283–294

    Article  CAS  PubMed  Google Scholar 

  10. Kwong N, Medici M, Angell TE et al (2015) The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J Clin Endocrinol Metab 100:4434–4440

    Article  CAS  PubMed  Google Scholar 

  11. Mihailovic J, Stefanovic L, Malesevic M et al (2009) The importance of age over radioiodine avidity as a prognostic factor in differentiated thyroid carcinoma with distant metastases. Thyroid 19:227–232

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676–690

    Article  CAS  Google Scholar 

  13. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  14. Wang J, Duncan D, Shi Z et al (2013) WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41:W77–W83

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang YC, Hsu YC, Liu CL et al (2014) Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PloS one 9:e89563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faggiano A, Coulot J, Bellon N et al (2004) Age-dependent variation of follicular size and expression of iodine transporters in human thyroid tissue. J Nucl Med 45:232–237

    CAS  PubMed  Google Scholar 

  17. Espadinha C, Santos JR, Sobrinho LG et al (2009) Expression of iodine metabolism genes in human thyroid tissues: evidence for age and BRAFV600E mutation dependency. Clin Endocrinol 70:629–635

    Article  CAS  Google Scholar 

  18. Siironen P, Ristimaki A, Nordling S et al (2004) Expression of COX-2 is increased with age in papillary thyroid cancer. Histopathology 44:490–497

    Article  CAS  PubMed  Google Scholar 

  19. Saad AG, Kumar S, Ron E et al (2006) Proliferative activity of human thyroid cells in various age groups and its correlation with the risk of thyroid cancer after radiation exposure. J Clin Endocrinol Metab 91:2672–2677

    Article  CAS  PubMed  Google Scholar 

  20. Bonnema SJ, Fast S, Nielsen VE et al (2011) Serum thyroxine and age—rather than thyroid volume and serum TSH—are determinants of the thyroid radioiodine uptake in patients with nodular goiter. J Endocrinol Investig 34:e52–e57

    Article  CAS  Google Scholar 

  21. Xing M, Alzahrani AS, Carson KA et al (2015) Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 33:42–50

    Article  PubMed  Google Scholar 

  22. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA et al (2006) The oncogene BRAFV600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I− targeting to the membrane. Endocr Relat Cancer 13:257–269

    Article  CAS  PubMed  Google Scholar 

  23. Ricarte-Filho JC, Ryder M, Chitale DA et al (2009) Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69:4885–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng SP, Hsu YC, Liu CL et al (2014) Significance of allelic percentage of BRAF c.1799T> A (V600E) mutation in papillary thyroid carcinoma. Ann Surg Oncol 21(4):619–626

    Article  Google Scholar 

  25. Liu T, Wang N, Cao J et al (2014) The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 33:4978–4984

    Article  CAS  PubMed  Google Scholar 

  26. Muzza M, Colombo C, Rossi S et al (2015) Telomerase in differentiated thyroid cancer: promoter mutations, expression and localization. Mol Cell Endocrinol 399:288–295

    Article  CAS  PubMed  Google Scholar 

  27. Yoshio K, Sato S, Okumura Y et al (2011) The local efficacy of I-131 for F-18 FDG PET positive lesions in patients with recurrent or metastatic thyroid carcinomas. Clin Nucl Med 36:113–117

    Article  PubMed  Google Scholar 

  28. Houtkooper RH, Argmann C, Houten SM et al (2011) The metabolic footprint of aging in mice. Sci Rep 1:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abu-Amero KK, Alzahrani AS, Zou M et al (2005) High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene 24:1455–1460

    Article  CAS  PubMed  Google Scholar 

  30. Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhat TA, Kumar S, Chaudhary AK et al (2015) Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 20:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haymart MR (2009) Understanding the relationship between age and thyroid cancer. Oncologist 14:216–221

    Article  PubMed  Google Scholar 

  33. Mocchegiani E, Giacconi R, Cipriano C et al (2009) NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol 29:416–425

    Article  CAS  PubMed  Google Scholar 

  34. Gogali F, Paterakis G, Rassidakis GZ et al (2012) Phenotypical analysis of lymphocytes with suppressive and regulatory properties (Tregs) and NK cells in the papillary carcinoma of thyroid. J Clin Endocrinol Metab 97:1474–1482

    Article  CAS  PubMed  Google Scholar 

  35. Donnelly RP, Loftus RM, Keating SE et al (2014) mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol 193:4477–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Childs RW, Carlsten M (2015) Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 14:487–498

    Article  CAS  PubMed  Google Scholar 

  37. Deandreis D, Al Ghuzlan A, Leboulleux S et al (2011) Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 18:159–169

    Article  CAS  PubMed  Google Scholar 

  38. Sandulache VC, Skinner HD, Wang Y et al (2012) Glycolytic inhibition alters anaplastic thyroid carcinoma tumor metabolism and improves response to conventional chemotherapy and radiation. Mol Cancer Ther 11:1373–1380

    Article  CAS  PubMed  Google Scholar 

  39. Wang SY, Wei YH, Shieh DB et al (2015) 2-Deoxy-D-glucose can complement doxorubicin and sorafenib to suppress the growth of papillary thyroid carcinoma cells. PloS one 10:e0130959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Ministry of Science and Technology of Taiwan (MOST-104-2314-B-195-004-MY3) and MacKay Memorial Hospital (MMH-10535). Results from this study were presented in part as a poster at a European Association for Cancer Research conference, Amsterdam, the Netherlands, in January 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Ping Cheng.

Ethics declarations

Disclosure of conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, YC., Liu, CL., Yang, PS. et al. Interaction of Age at Diagnosis with Transcriptional Profiling in Papillary Thyroid Cancer. World J Surg 40, 2922–2929 (2016). https://doi.org/10.1007/s00268-016-3625-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-016-3625-8

Keywords

Navigation