Skip to main content

Advertisement

Log in

Biomarkers for Dysplastic Barrett’s: Ready for Prime Time?

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

There is need for the application of biomarkers in a clinical setting in order to improve patient care. Current surveillance methods are costly for health care systems and invasive for patients, and subjective methodology leads to frequent misdiagnosis. This review summarises the most advanced recent and relevant literature in the field of biomarker development in the context of Barrett’s esophagus and comments on their potential application. Studies included roughly correlate with Early Detection Research Network phases three and four.

Recent findings

A number of individual candidate and panels of biomarkers have been investigated recently. These include: gene-specific mutations such as loss of heterozygosity, copy number alterations (in particular aneuploidy) methylation panels, altered gene expression, and glycosylation assayed by lectin binding, as well as genetic and clonal diversity measures. Immunostaining for p53 is the only candidate biomarker deemed “ready for prime time.” This has been recommended for use clinically as an adjunct to histological diagnosis of dysplastic Barrett’s esophagus in the 2014 British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s esophagus.

Conclusions

Progress is being made but in many cases further prospective validation studies are required before clinical application can take place. Limitations to furthering these studies include the large patient cohorts required for prospective validation studies, costs associated with studies, and reproducibility of methods across laboratories. Continued research in this area is strongly recommended as, in the long run, biomarker application has the potential to significantly improve patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cancer Research UK (CRUK), Oesophageal cancer. http://www.cancerresearchuk.org/cancer-help/type/oesophageal-cancer/. Accessed 31 Jan 2014

  2. Thrift AP, Pandeya N, Whiteman DC (2012) Current status and future perspectives on the etiology of esophageal adenocarcinoma. Front Oncol 2:11

    Article  PubMed Central  PubMed  Google Scholar 

  3. Su Z, Gay LJ, Strange A et al (2012) Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat Genet 44(10):1131–1136

    Article  CAS  PubMed  Google Scholar 

  4. Levine DM, Ek WE, Zhang R et al (2013) A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet 45(12):1487–1493

    Article  CAS  PubMed  Google Scholar 

  5. Frankel A, Armour N, Nancarrow D et al (2014) Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis. Genes Chromosom Cancer 53(4):324–338

    Article  CAS  PubMed  Google Scholar 

  6. Ek WE, Levine DM, D’Amato M et al (2013) Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal reflux. J Natl Cancer Inst 105(22):1711–1718

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schlemper RJ, Riddell RH, Kato Y et al (2000) The Vienna classification of gastrointestinal epithelial neoplasia. Gut 47(2):251–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hvid-Jensen F, Pedersen L, Drewes AM et al (2011) Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med 365(15):1375–1383

    Article  CAS  PubMed  Google Scholar 

  9. Bhat S, Coleman HG, Yousef F et al (2011) Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst 103(13):1049–1057

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sikkema M, de Jonge PJ, Steyerberg EW et al (2010) Risk of esophageal adenocarcinoma and mortality in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 8(3):235–244 quiz e32

    Article  PubMed  Google Scholar 

  11. Curvers WL, ten Kate FJ, Krishnadath KK et al (2010) Low-grade dysplasia in Barrett’s esophagus: overdiagnosed and underestimated. Am J Gastroenterol 105(7):1523–1530

    Article  PubMed  Google Scholar 

  12. Shaheen NJ, Sharma P, Overholt BF et al (2009) Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med 360(22):2277–2288

    Article  CAS  PubMed  Google Scholar 

  13. Fitzgerald RC, di Pietro M, Ragunath K et al (2014) British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut 63(1):7–42

    Article  PubMed  Google Scholar 

  14. Spechler SJ, Sharma P, Souza RF et al (2011) American gastroenterological association technical review on the management of Barrett’s esophagus. Gastroenterology 140(3):e18–e52 quiz e13

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fountoulakis A, Zafirellis KD, Dolan K et al (2004) Effect of surveillance of Barrett’s oesophagus on the clinical outcome of oesophageal cancer. Br J Surg 91(8):997–1003

    Article  CAS  PubMed  Google Scholar 

  16. Wong T, Tian J, Nagar AB (2010) Barrett’s surveillance identifies patients with early esophageal adenocarcinoma. Am J Med 123(5):462–467

    Article  PubMed  Google Scholar 

  17. Corley DA, Mehtani K, Quesenberry C et al (2013) Impact of endoscopic surveillance on mortality from Barrett’s esophagus-associated esophageal adenocarcinomas. Gastroenterology 145(2):312-9.e1

    Article  PubMed  Google Scholar 

  18. Gupta M, Iyer PG, Lutzke L et al (2013) Recurrence of esophageal intestinal metaplasia after endoscopic mucosal resection and radiofrequency ablation of Barrett’s esophagus: results from a US Multicenter Consortium. Gastroenterology 145(1):79-86.e1

    Article  PubMed Central  PubMed  Google Scholar 

  19. Haidry RJ, Dunn JM, Butt MA et al (2013) Radiofrequency ablation and endoscopic mucosal resection for dysplastic Barrett’s esophagus and early esophageal adenocarcinoma: outcomes of the UK National Halo RFA Registry. Gastroenterology 145(1):87–95

    Article  PubMed  Google Scholar 

  20. Dulak AM, Stojanov P, Peng S et al (2013) Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet 45(5):478–486

    Article  CAS  PubMed  Google Scholar 

  21. Agrawal N, Jiao Y, Bettegowda C et al (2012) Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov 2(10):899–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pepe MS, Etzioni R, Feng Z et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061

    Article  CAS  PubMed  Google Scholar 

  23. Reid BJ, Prevo LJ, Galipeau PC et al (2001) Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol 96(10):2839–2848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Reid BJ, Levine DS, Longton G et al (2000) Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol 95(7):1669–1676

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Galipeau PC, Li X, Blount PL et al (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4(2):e67

    Article  PubMed Central  PubMed  Google Scholar 

  26. Shariff MK, Di Pietro M, Boerwinkel DF et al (2012) Time: a prospective study combining endoscopic trimodal imaging and molecular endpoints to improve risk stratification in Barrett’s esophagus. Digestive Disease Week; May 2012; San Diego. Gastroenterology 142:S427

    Google Scholar 

  27. Bird-Lieberman EL, Dunn JM, Coleman HG et al (2012) Population-based study reveals new risk-stratification biomarker panel for Barrett’s esophagus. Gastroenterology 143(4):927-35 e3

    Article  PubMed  Google Scholar 

  28. Bird-Lieberman EL, Neves AA, Lao-Sirieix P et al (2012) Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med 18(2):315–321

    Article  CAS  PubMed  Google Scholar 

  29. Schulmann K, Sterian A, Berki A et al (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 24(25):4138–4148

    Article  CAS  PubMed  Google Scholar 

  30. Jin Z, Cheng Y, Olaru A et al (2008) Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer 123(10):2331–2336

    Article  CAS  PubMed  Google Scholar 

  31. Jin Z, Hamilton JP, Yang J et al (2008) Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiol Biomark Prev 17(1):111–117

    Article  CAS  Google Scholar 

  32. Jin Z, Mori Y, Hamilton JP et al (2008) Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer 112(1):43–49

    Article  CAS  PubMed  Google Scholar 

  33. Jin Z, Mori Y, Yang J et al (2007) Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene 26(43):6332–6340

    Article  CAS  PubMed  Google Scholar 

  34. Jin Z, Olaru A, Yang J et al (2007) Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin Cancer Res 13(21):6293–6300

    Article  CAS  PubMed  Google Scholar 

  35. Jin Z, Cheng Y, Gu W et al (2009) A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res 69(10):4112–4115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Alvi MA, Liu X, O’Donovan M et al (2013) DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett’s esophagus. Clin Cancer Res 19(4):878–888

    Article  CAS  PubMed  Google Scholar 

  37. Maley CC, Galipeau PC, Finley JC et al (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38(4):468–473

    Article  CAS  PubMed  Google Scholar 

  38. Merlo LM, Shah NA, Li X et al (2010) A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev Res (Phila) 3(11):1388–1397

    Article  Google Scholar 

  39. Kostadinov RL, Kuhner MK, Li X et al (2013) NSAIDs modulate clonal evolution in Barrett’s esophagus. PLoS Genet 9(6):e1003553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Li X, Galipeau PC, Paulson TG et al (2014) Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett’s esophagus. Cancer Prev Res (Phila) 7(1):114–127

    Article  Google Scholar 

  41. Bani-Hani K, Martin IG, Hardie LJ et al (2000) Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst 92(16):1316–1321

    Article  CAS  PubMed  Google Scholar 

  42. Lao-Sirieix P, Lovat L, Fitzgerald RC (2007) Cyclin A immunocytology as a risk stratification tool for Barrett’s esophagus surveillance. Clin Cancer Res 13(2 Pt 1):659–665

    Article  CAS  PubMed  Google Scholar 

  43. Rygiel AM, Milano F, Ten Kate FJ et al (2008) Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia–dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Cancer Epidemiol Biomark Prev 17(6):1380–1385

    Article  CAS  Google Scholar 

  44. Paterson AL, O’Donovan M, Provenzano E et al (2013) Characterization of the timing and prevalence of receptor tyrosine kinase expression changes in oesophageal carcinogenesis. J Pathol 230(1):118–128

    Article  CAS  PubMed  Google Scholar 

  45. Rygiel AM, Milano F, Ten Kate FJ et al (2008) Assessment of chromosomal gains as compared to DNA content changes is more useful to detect dysplasia in Barrett’s esophagus brush cytology specimens. Genes Chromosom Cancer 47(5):396–404

    Article  CAS  PubMed  Google Scholar 

  46. Pacha A, Westra W et al (2012) A diagnostic DNA FISH biomarker assay identifies HGD or EAC in Barrett esophagus. Digestive Disease Week; May 2012; San Diego. Gastroenterology 142:S445

    Google Scholar 

  47. Greenblatt MS, Bennett WP, Hollstein M et al (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54(18):4855–4878

    CAS  PubMed  Google Scholar 

  48. Kaye PV, Haider SA, James PD et al (2010) Novel staining pattern of p53 in Barrett’s dysplasia-the absent pattern. Histopathology 57(6):933–935

    Article  PubMed  Google Scholar 

  49. Weston AP, Banerjee SK, Sharma P et al (2001) p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterol 96(5):1355–1362

    Article  CAS  PubMed  Google Scholar 

  50. Murray L, Sedo A, Scott M et al (2006) TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut 55(10):1390–1397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kastelein F, Biermann K, Steyerberg EW et al (2013) Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett’s oesophagus. Gut 62(12):1676–1683

    Article  CAS  PubMed  Google Scholar 

  52. Kaye PV, Haider SA, Ilyas M et al (2009) Barrett’s dysplasia and the Vienna classification: reproducibility, prediction of progression and impact of consensus reporting and p53 immunohistochemistry. Histopathology 54(6):699–712

    Article  PubMed  Google Scholar 

  53. Li M, Anastassiades CP, Joshi B et al (2010) Affinity peptide for targeted detection of dysplasia in Barrett’s esophagus. Gastroenterology 139(5):1472–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kadri SR, Lao-Sirieix P, O’Donovan M et al (2010) Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ 341:c4372

    Article  PubMed Central  PubMed  Google Scholar 

  55. Benaglia T, Sharples LD, Fitzgerald RC et al (2013) Health benefits and cost effectiveness of endoscopic and nonendoscopic cytosponge screening for Barrett’s esophagus. Gastroenterology 144(1):62-73.e6

    Article  PubMed  Google Scholar 

  56. Alvi MA, Liu XX, O’Donovan M et al (2013) DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett’s esophagus. Clin Cancer Res 19(4):878–888

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleanor M. Gregson or Rebecca C. Fitzgerald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregson, E.M., Fitzgerald, R.C. Biomarkers for Dysplastic Barrett’s: Ready for Prime Time?. World J Surg 39, 568–577 (2015). https://doi.org/10.1007/s00268-014-2640-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-014-2640-x

Keywords

Navigation