Skip to main content

Advertisement

Log in

Cancer Stem Cell Marker Bmi-1 Expression is Associated with Basal-like Phenotype and Poor Survival in Breast Cancer

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

The purpose of present study was to examine the expression of cancer stem cell marker Bmi-1 in breast cancer tissue and to evaluate the clinical implication of Bmi-1 expression for these patients.

Methods

A total of 171 breast cancer patients who received surgical treatment in our hospital were enrolled in this study. Bmi-1 expression in breast cancer tissue was assayed by immunohistochemistry. Statistical analyses were applied to test the relationship between expression of Bmi-1 and clinicopathologic features and patient survival. The relationship between Bmi-1 and the basal-like phenotype of breast cancer also was analyzed in this study.

Results

Positive Bmi-1 expression was detected in 89 of 171 (52%) invasive breast cancers patients. The Bmi-1 status was significantly correlated to histological grade III (p = 0.001) and basal-like phenotype (p < 0.001). The 5 year overall survival of the patients with Bmi-1-positive and -negative cancers were 78 and 91.9%, respectively (p = 0.03). Histological grade (p = 0.046) and Bmi-1 status (p = 0.012) were detected as the independent prognostic factors in the Cox regression test.

Conclusions

Bmi-1 status is an independent prognostic factor, which also is associated with tumor histological grade and basal-like phenotype. The high proportions of positive Bmi-1 expression in basal-like breast cancer may be related to the high aggressiveness behavior of this subtype of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  3. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  4. Sotiriou C, Neo SY, McShane LM et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 100:10393–10398

    Article  PubMed  CAS  Google Scholar 

  5. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  6. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    Article  PubMed  Google Scholar 

  7. Badve S, Dabbs DJ, Schnitt SJ et al (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol 24:157–167

    Article  PubMed  Google Scholar 

  8. Haupt Y, Alexander WS, Barri G et al (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65:753–763

    Article  PubMed  CAS  Google Scholar 

  9. van Lohuizen M, Verbeek S, Scheijen B et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752

    Article  PubMed  Google Scholar 

  10. van der Lugt NM, Domen J, Linders K et al (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8:757–769

    Article  PubMed  Google Scholar 

  11. Pirrotta V (1998) Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93:333–336

    Article  PubMed  CAS  Google Scholar 

  12. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    Article  PubMed  CAS  Google Scholar 

  13. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  PubMed  CAS  Google Scholar 

  14. Jiang L, Li J, Song L (2009) Bmi-1, stem cells and cancer. Acta Biochim Biophys Sin (Shanghai) 41:527–534

    Article  CAS  Google Scholar 

  15. Kim JH, Yoon SY, Jeong SH et al (2004) Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast 13:383–388

    Article  PubMed  Google Scholar 

  16. Feng Y, Song LB, Guo BH et al (2007) Expression and significance of Bmi-1 in breast cancer. Ai Zheng 26:154–157

    PubMed  CAS  Google Scholar 

  17. Arnes JB, Collett K, Akslen LA (2008) Independent prognostic value of the basal-like phenotype of breast cancer and associations with EGFR and candidate stem cell marker BMI-1. Histopathology 52:370–380

    Article  PubMed  CAS  Google Scholar 

  18. Choi YJ, Choi YL, Cho EY et al (2009) Expression of Bmi-1 protein in tumor tissues is associated with favorable prognosis in breast cancer patients. Breast Cancer Res Treat 113:83–93

    Article  PubMed  CAS  Google Scholar 

  19. Honig A, Weidler C, Häusler S et al (2010) Overexpression of polycomb protein BMI-1 in human specimens of breast, ovarian, endometrial and cervical cancer. Anticancer Res 30:1559–1564

    PubMed  CAS  Google Scholar 

  20. Riis ML, Lüders T, Nesbakken AJ et al (2010) Expression of BMI-1 and Mel-18 in breast tissue: a diagnostic marker in patients with breast cancer. BMC Cancer 10:686

    Article  PubMed  Google Scholar 

  21. Guo BH, Feng Y, Zhang R et al (2011) Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer 10:10

    Article  PubMed  CAS  Google Scholar 

  22. Joensuu K, Hagström J, Leidenius M et al (2011) Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases–elevated Bmi-1 expression in late breast cancer relapses. Virchows Arch 459:31–39

    Article  PubMed  CAS  Google Scholar 

  23. Vonlanthen S, Heighway J, Altermatt HJ et al (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 84:1372–1376

    Article  PubMed  CAS  Google Scholar 

  24. Kim JH, Yoon SY, Kim CN et al (2004) The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett 203:217–224

    Article  PubMed  CAS  Google Scholar 

  25. Song W, Tao K, Li H et al (2010) Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci 101:1754–1760

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X, Wang CX, Zhu CB et al (2010) Overexpression of Bmi-1 in uterine cervical cancer: correlation with clinicopathology and prognosis. Int J Gynecol Cancer 20:1597–1603

    Article  PubMed  Google Scholar 

  27. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  PubMed  CAS  Google Scholar 

  28. Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6:2332–2338

    Article  PubMed  CAS  Google Scholar 

  29. Shackleton M, Quintana E, Fearon ER et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  PubMed  CAS  Google Scholar 

  30. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12:296–300

    Article  PubMed  CAS  Google Scholar 

  31. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  32. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324:1670–1673

    Article  PubMed  CAS  Google Scholar 

  33. Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    Article  PubMed  CAS  Google Scholar 

  34. Park SY, Lee HE, Li H et al (2010) Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 16:876–887

    Article  PubMed  CAS  Google Scholar 

  35. Kakarala M, Wicha MS et al (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26:2813–2820

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Ningxia Medical University (XT200916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhe, H., Ding, Z. et al. Cancer Stem Cell Marker Bmi-1 Expression is Associated with Basal-like Phenotype and Poor Survival in Breast Cancer. World J Surg 36, 1189–1194 (2012). https://doi.org/10.1007/s00268-012-1514-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-012-1514-3

Keywords

Navigation