Skip to main content

Advertisement

Log in

Vagal Nerve Function in Obesity: Therapeutic Implications

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

The primal need for nutrients is satisfied by mechanisms for sensing internal stores and detecting food; ATP is the most primitive signal. With increasing density of sensory neurons and glia (the primordial brain) and the emergence of autonomic neural activity throughout the endoderm, transmitters and other signaling molecules enable alimentation before the appearance of innate storage functions. Memory and, ultimately, cognition are prerequisites for processing and producing food to facilitate assimilation and safeguard the supply of nutrients. The gut–brain–gut axis via the vagus nerve is the autonomic neurohumoral pathway integrating these elements of energy homeostasis. Humans uniquely override obligate nutrient needs, eating in the absence of deprivation, resulting in pathological chronic overnutrition arising from dysautonomia. Obesity surgery circumvents powerful redundant mechanisms of alimentation and reduces excess stores of body fat from chronic overnutrition while preventing re-accumulation of fat. All bariatric operations, whether purely restrictive, maldigestive and malabsorptive, or combinations, rely on regulatory mechanisms related to autonomic nervous system function and the brain–gut axis. We review the functional anatomy and the importance of the vagus nerve for maintaining maladaptive chronic overnutrition and describe interventions to abrogate its effects. In aggregate, the preponderance of evidence supported by laboratory and clinical mechanistic studies interrupting abdominal bi-directional vagal transmission demonstrates that the majority of patients report less “hunger” and lose weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dallman MF, Pecoraro N, Akana SF et al (2003) Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci USA 100:11696–11701

    Article  PubMed  CAS  Google Scholar 

  2. Iannoli P, Miller JH, Ryan CK et al (1998) Glucocorticoids upregulate intestinal nutrient transport in a time-dependent and substrate-specific fashion. J Gastrointest Surg 2:449–457

    Article  PubMed  CAS  Google Scholar 

  3. Gohil BC, Rosenblum LA, Coplan JD et al (2001) Hypothalamic-pituitary-adrenal axis function and the metabolic syndrome X of obesity. CNS Spectr 6:581–589

    PubMed  CAS  Google Scholar 

  4. Kral JG (2001) Morbidity of severe obesity. Surg Clin North Am 81:1039–1061

    Article  PubMed  CAS  Google Scholar 

  5. Soulairac A (1947) Importance de l’absorption intestinal dans la régulation de l’appétit glucidique. CR Hebd Séances Acad Sci 224:961–963

    CAS  Google Scholar 

  6. Granér M, Kahri J, Nakano T (2006) Impact of postprandial lipaemia on low-density lipoprotein (LDL) size and oxidized LDL in patients with coronary artery disease. Eur J Clin Invest 36:764–770

    Article  PubMed  Google Scholar 

  7. Kral JG (1998) Surgical treatment of regional adiposity: lipectomy versus surgically induced weight loss. Acta Med Scand 723(Suppl):225–231

    Google Scholar 

  8. Kral JG (1981) Vagal mechanisms in appetite regulation. Int J Obes 5:481–489

    PubMed  CAS  Google Scholar 

  9. Kral JG, Buckley MC, Kissileff HR et al (2001) Metabolic correlates of eating behavior in severe obesity. Int J Obes 25:258–264

    Article  CAS  Google Scholar 

  10. Brodie BC (1814) Experiments and observations on the influence of the nerves of the eighth pair on the secretions of the stomach. Philos Trans R Soc Lond 104:102–106

    Article  Google Scholar 

  11. Pavlov I, Schumova-Simanovskaja E (1889) Innervation der Magendrüsen beim Hunde. Zentralblatt für Chirurgie 3:113

    Google Scholar 

  12. Latarjet A (1921) Section des rameaux gastriques du vague. Presse Med 41:409

    Google Scholar 

  13. Dragstedt LR, Owens FM Jr (1943) Supra-diaphragmatic section of the vagus nerves in treatment of duodenal ulcer. Proc Soc Exp Biol Med 53:152–154

    Google Scholar 

  14. Skandalakis LJ, Donahue PE, Skandalakis JE (1993) The vagus nerve and its vagaries. Surg Clin North Am 73:769–784

    PubMed  CAS  Google Scholar 

  15. Griffith CA (1964) A new anatomic approach to the problem of incomplete vagotomy. Surg Clin North Am 44:1239–1251

    Google Scholar 

  16. Nyhus LM, Donahue PE, Krysostek RJ et al (1980) Complete vagotomy: the evolution of an effective technique. Arch Surg 115:264–268

    PubMed  CAS  Google Scholar 

  17. Holle F (1983) Adequate selective proximal vagotomy with pyloroplasty as nonresective surgery for peptic ulcer disease: a 20 year review. Int Surg 68:295–298

    PubMed  CAS  Google Scholar 

  18. Kusikari K, Nyhus LM, Gillison EW et al (1972) An endoscopic test for completeness of vagotomy. Arch Surg 105:386–391

    Google Scholar 

  19. Peetsalu A, Peetsalu M (1998) Interpretation of postvagotomy endoscopic Congo red test results in relation to ulcer recurrence 5 to 12 years after operation. Am J Surg 175:472–476

    Article  PubMed  CAS  Google Scholar 

  20. Goto Y, Hollinshead JW, Debas HT (1984) A new intraoperative test for completeness of vagotomy: the PCP-GABA (beta-parachlorophenol-gamma-aminobutyric acid) test. Am J Surg 147:159–163

    Article  PubMed  CAS  Google Scholar 

  21. Thirlby RC, Stevens MH, Blair AJ et al (1988) Effect of GABA on basal and vagally mediated gastric acid secretion and hormone release in dogs. Am J Physiol 254(5 Pt1):G723–G731

    PubMed  CAS  Google Scholar 

  22. Lin W-C (1996) Potentiation by baclofen of gastric acid secretion stimulated by secretagogues in vagotomized rats under anesthesia. Res Commun Mol Pathol Pharmacol 91:211–214

    CAS  Google Scholar 

  23. Johnson CD, Rai AS (1990) Urine acid output as a test of completeness of vagotomy. Br J Surg 77:417–420 (comment 1313)

    Article  PubMed  CAS  Google Scholar 

  24. Kraly FS, Gibbs JC, Smith GP (1975) Disordered drinking after abdominal vagotomy in rats. Nature 258:226–228

    Article  PubMed  CAS  Google Scholar 

  25. Kral JG (1983) Behavioral effects of vagotomy in humans. J Auton Nerv Syst 9:273–281

    Article  PubMed  CAS  Google Scholar 

  26. Phillips RJ, Baronowsky EA, Powley TL (2003) Long-term regeneration of abdominal vagus: efferents fail while afferents succeed. J Comp Neurol 455:222–237

    Article  PubMed  Google Scholar 

  27. Powley TL, Chi MM, Baronowsky EA et al (2005) Gastrointestinal tract innervations of the mouse: afferent regeneration and meal patterning after vagotomy. Am J Physiol Regul Integr Comp Physiol 289:R563–R574

    PubMed  CAS  Google Scholar 

  28. Thomson JD, Galloway JBW (1979) Vagotomy and pyloric dilatation in chronic duodenal ulceration. BMJ 1:1453–1455

    Article  PubMed  CAS  Google Scholar 

  29. Avci C, Ozmen V, Avtan L et al (1999) Vagotomy without gastric drainage laparoscopic or thoracoscopic approach. Hepatogastroenterology 46:1494–1499

    PubMed  CAS  Google Scholar 

  30. Dragstedt LR, Camp EH (1948) Follow-up of gastric vagotomy alone in the treatment of peptic ulcer. Gastroenterology 11:460–465

    PubMed  CAS  Google Scholar 

  31. Jahnberg T, Martinson L, Hultén L et al (1975) Dynamic response to expansion before and after vagotomy. Scand J Gastroenterol 10:593–598

    PubMed  CAS  Google Scholar 

  32. Hong HS, Lee J, Lee EA (2009) A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells. Nat Med 15:425–435

    Article  PubMed  CAS  Google Scholar 

  33. Carlson AJ (1913) Contributions to the physiology of the stomach: II. The relation between the contractions of the empty stomach and the sensation of hunger. Am J Physiol 31:175–192

    Google Scholar 

  34. Grossman MI, Cummins GM, Ivy AC (1947) The effect of insulin on food intake after vagotomy and sympathectomy. Am J Physiol 149:100–102

    CAS  Google Scholar 

  35. Towler DA, Havlin CE, Craft S et al (1993) Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes 42:1791–1798

    Article  PubMed  CAS  Google Scholar 

  36. Pringle R, Irving AD, Longrigg JN et al (1983) Randomized trial of truncal vagotomy with either pyloroplasty or pyloric dilatation in the surgical management of chronic duodenal ulcer. Br J Surg 70:482–484

    Article  PubMed  CAS  Google Scholar 

  37. Gortz L, Bjorkman AC, Andersson H et al (1990) Truncal vagotomy reduces food and liquid intake in man. Physiol Behav 48:779–781

    Article  PubMed  CAS  Google Scholar 

  38. Luciani L (1890) Das Hungern. Leipzig, cited in AJ Carlson, The control of hunger in health and disease (1916) University of Chicago Press, Chicago

  39. Gaskell WH (1886) On the structure, distribution and function of the nerves which innervate the visceral and vascular systems. J Physiol 7:1–80

    PubMed  CAS  Google Scholar 

  40. Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B 140:578–592

    Article  PubMed  CAS  Google Scholar 

  41. Hervey GR (1959) The effects of lesions in the hypothalamus in parabiotic rats. J Physiol 145:336–352

    PubMed  CAS  Google Scholar 

  42. Hetherington AW (1940) Obesity in the rat following the injection of chronic acid into the hypophysis. Endocrinology 26:264–268

    Article  CAS  Google Scholar 

  43. Brooks C McC, Lambert EF, Bard P (1942) Experimental production of obesity in the monkey [Macaca mulatta]. Fed Proc 1:11 (abstract)

    Google Scholar 

  44. Brobeck JR, Tepperman J, Long CNH (1943) Experimental hypothalamic hyperphagia in the albino rat. Yale J Biol Med 15:831–853

    Google Scholar 

  45. Babinski MJ (1900) Tumeur du corps pituitaire, sans acromégalie, et avec arrêt de développement des organs génitaux. Rev Neurol 8:531–533

    Google Scholar 

  46. Bray GA, Gallagher TF Jr (1975) Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of the literature. Medicine 54:301–330

    Article  PubMed  CAS  Google Scholar 

  47. Lee M, Korner J (2009) Review of physiology, clinical manifestations, and management of hypothalamic obesity in humans. Pituitary 12:87–95

    Article  PubMed  CAS  Google Scholar 

  48. Powley TL, Opsahl CA (1974) Ventromedial hypothalamic obesity abolished by subdiaphragmatic vagotomy. Am J Physiol 226:25–33

    Google Scholar 

  49. Brooks C McC, Lockwood RA, Wiggins ML (1946) A study of the effects of hypothalamic lesions on the eating habits of the albino rat. Am J Physiol 147:735–741

    Google Scholar 

  50. Mordes JP, El Lozy M, Herrera MG et al (1979) Effects of vagotomy with and without pyloroplasty on weight and food intake in rats. Am J Physiol 236:R61–R66

    PubMed  CAS  Google Scholar 

  51. Meyer JH (1994) Nutritional outcomes of gastric operations. Gastroenterol Clin North Am 23:227–260

    PubMed  CAS  Google Scholar 

  52. Wheldon EJ, Venables CW, Johnston ID (1970) Late metabolic sequelae of vagotomy and gastroenterostomy. Lancet 1(7644): 437–440

    Google Scholar 

  53. Edwards JP, Lyndon PJ, Smith RB et al (1974) Faecal fat excretion after truncal, selective, and highly selective vagotomy for duodenal ulcer. Gut 15:521–525

    Article  PubMed  CAS  Google Scholar 

  54. Date Y, Nakazato M, Murakami N (2001) Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem Biophys Res Commun 280:904–907

    Article  PubMed  CAS  Google Scholar 

  55. le Roux CW, Neary NM, Halsey TJ et al (2005) Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 90:4521–4524

    Article  PubMed  CAS  Google Scholar 

  56. Becskei C, Lutz TA, Riediger T (2009) Diet-derived nutrients mediate the inhibition of hypothalamic NPY neurons in the arcuate nucleus of mice during refeeding. Am J Phys Reg Integr Comp Physiol 297:R100–R110

    CAS  Google Scholar 

  57. Kral JG (1976) Surgical reduction of adipose tissue in the male Sprague-Dawley rat. Am J Physiol 231:1090–1096

    PubMed  CAS  Google Scholar 

  58. Kral JG (1975) Surgical reduction of adipose tissue hypercellularity in man. Scand J Plast Reconstr Surg 9:140–143

    Article  PubMed  CAS  Google Scholar 

  59. Granerus G, Bergmark J, Kral JG (1979) Histamine metabolism in severe obesity before and after jejuno-ileostomy. Scand J Clin Invest 39:671–675

    Article  PubMed  CAS  Google Scholar 

  60. Kral JG (1978) Vagotomy for treatment of severe obesity. Lancet 30:7–308

    Google Scholar 

  61. Kirkham JS (1980) Vagotomy for obesity. In: Maxwell JD, Gazet J-C, Pilkington TR (eds) Surgical management of obesity. New York, Grune & Stratton, pp 53–56

    Google Scholar 

  62. Kral JG, Görtz L, Hermansson G et al (1993) Gastroplasty for obesity: long-term weight loss improved by vagotomy. World J Surg 17:75–78

    Article  PubMed  CAS  Google Scholar 

  63. Twardowska-Saucha K, Pardela M, Grzeszczak W et al. (1993) Level of beta endorphins and insulin in blood of obese subjects. Effect of surgical treatment for obesity and higher exchange parameters. Pol Arch Med Wewn 90:19–25 (in Polish)

    Google Scholar 

  64. Katkhouda N, Waldrep DJ, Campos GM et al (1998) An improved technique for laparoscopic highly selective vagotomy using harmonic shears. Surg Endosc 12:1051–1054

    Article  PubMed  CAS  Google Scholar 

  65. Kral JG (2007) A stitch in time versus a life in misery (editorial). Surg Obes Relat Dis 3:2–5

    Article  PubMed  Google Scholar 

  66. Boss TJ, Trus T, Peters JH et al (2008) Laparoscopic truncal vagotomy for weight-loss: a prospective, dual-center safety and efficacy study. Surg Endosc 22(Suppl 1):S146 (abstract)

    Google Scholar 

  67. Angrisani L, Cutolo PP, Ciciriello MB et al. (2008) Laparoscopic adjustable gastric banding with truncal vagotomy versus laparoscopic adjustable gastric banding alone: interim results of prospective randomized trial. Surg Obes Relat Dis [Epub ahead of print]

  68. Earle KR, Martin MB, Newman DH et al (2008) Laparoscopic adjustable gastric banding with truncal vagotomy. Surg Endosc 22(Suppl 1):S199 (abstract)

    Google Scholar 

  69. Arkhammar S, Görtz L, Lönroth H et al (2008) Follow-up 12–30 years after truncal vagotomy for severe obesity. Obes Surg 18:466 (abstract)

    Google Scholar 

  70. Printen KJ, Scott D, Mason EE (1980) Stomal ulcers after gastric bypass. Arch Surg 115:525–527

    PubMed  CAS  Google Scholar 

  71. Torres JC (1994) Gastric bypass distal Roux-en-Y jejunal interposition with selective proximal vagotomy and posterior truncal vagotomy. Obes Surg 4:279–284

    Article  PubMed  Google Scholar 

  72. Buckwalter JA (1982) Surgical treatment of morbid obesity with reflux esophagitis. Am Surg 48:128–130

    PubMed  CAS  Google Scholar 

  73. Biron S, Plamondon H, Bourque RA et al (1986) Clinical experience with biliopancreatic bypass and gastrectomy or selective vagotomy for morbid obesity. Can J Surg 29:408–410

    PubMed  CAS  Google Scholar 

  74. Sapala JA, Wood MH, Schuhknecht MP (2004) Vagotomy at the time of gastric bypass: can it be harmful? Obes Surg 14:575–576

    Article  PubMed  Google Scholar 

  75. Date Y, Murakami N, Toshinai K et al (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Article  PubMed  CAS  Google Scholar 

  76. Thaler JP, Cummings DE (2009) Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology 150:2518–2525

    Article  PubMed  CAS  Google Scholar 

  77. Williams DL, Grill HJ, Cummings DE et al (2003) Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 144:5184–5187

    Article  PubMed  CAS  Google Scholar 

  78. Dixon FR, Dixon JB, O’Brien PE (2005) Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab 90:813–819

    Article  PubMed  CAS  Google Scholar 

  79. Cigaina V (2002) Gastric pacing as therapy for morbid obesity: preliminary results. Obes Surg 12(Suppl 1):12S–16S; erratum (2002) Obes Surg 12:421

    Google Scholar 

  80. Cigaina V, Hirschberg AL (2007) Plasma ghrelin and gastric pacing in morbidly obese patients. Metabolism 56:1017–1021

    Article  PubMed  CAS  Google Scholar 

  81. Wang GJ, Yang J, Volkow ND et al (2006) Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci USA 103:15641–15645

    Article  PubMed  CAS  Google Scholar 

  82. Shikora SA, Bergenstal R, Bessler M et al (2009) Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial. Surg Obes Relat Dis 5:31–37

    Article  PubMed  Google Scholar 

  83. Bohdjalian A, Prager G, Aviv R et al (2006) One-year experience with Tantalus: a new surgical approach to treat morbid obesity. Obes Surg 16:627–664

    Article  PubMed  Google Scholar 

  84. Bohdjalian A, Ludvik B, Guerci B et al. (2008) Improvement in glycemic control by gastric electrical stimulation (TANTALUS™) in overweight subjects with type 2 diabetes. Surg Endosc doi:10.1007/s00464-008-0222-4

  85. Abubakr A, Wambacq I (2008) Long-term outcome of vagus nerve stimulation therapy in patients with refractory epilepsy. J Clin Neurosci 15:127–129

    Article  PubMed  Google Scholar 

  86. Koren MS, Holmes MD (2006) Vagus nerve stimulation does not lead to significant changes in body weight in patients with epilepsy. Epilepsy Behav 8:246–249

    Article  PubMed  Google Scholar 

  87. Pardo JV, Sheikh SA, Kuskowski MA et al (2007) Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes 31:1756–1759

    Article  CAS  Google Scholar 

  88. Pardo JV, Sheikh SA, Schwindt GC et al (2008) Chronic vagus nerve stimulation for treatment-resistant depression decreases resting ventromedial prefrontal glucose metabolism. Neuroimage 42:879–889

    Article  PubMed  Google Scholar 

  89. Camilleri M, Toouli J, Herrera MF et al (2008) Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143:723–731

    Article  PubMed  CAS  Google Scholar 

  90. Tweden KS, Sarr MG, Camilleri M et al (2006) Vagal blocking for obesity control (VBLOC): studies of pancreatic and gastric function and safety in a porcine model. Surg Obes Relat Dis 2:301–302 (abstract)

    Article  Google Scholar 

  91. Tweden KS, Anvari M, Bierk MD et al (2006) Vagal blocking for obesity control (VBLOC): concordance of effects of very high frequency blocking current at the neural and organ levels using two preclinical models. Gastroenterology 130:A-148 (abstract)

    Google Scholar 

  92. Wang F, Tian D-R, Han J-S (2008) Electroacupuncture in the treatment of obesity. Neurochem Res 33:2023–2027

    Article  PubMed  CAS  Google Scholar 

  93. Woodward T, McCluskey DIII, Wallace MB et al (2008) Pilot study of transesophageal endoscopic surgery: NOTES esophagomyotomy, vagotomy lymphadenectomy. J Laparoendosc Adv Surg Tech A 18:743–745

    Article  PubMed  Google Scholar 

  94. Foschi D, Lazzaroni M, Sangaletti O et al (2008) Effects of intramural administration of Botulinum toxin A on gastric emptying and eating capacity in obese patients. Dig Liver Dis 40:667–672

    Article  PubMed  CAS  Google Scholar 

  95. Arepally A, Barnett BP, Patel TT et al (2008) Catheter-directed gastric artery chemical embolization suppresses systemic ghrelin levels in porcine model. Radiology 249:127–133

    Article  PubMed  Google Scholar 

  96. Appolinario JC, Bueno JR, Coutinho W (2004) Psychotropic drugs in the treatment of obesity: what promise? CNS Drugs 18:629–651

    Article  PubMed  CAS  Google Scholar 

  97. Leung FW (2008) Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution. Life Sci 83:1–5

    Article  PubMed  CAS  Google Scholar 

  98. Kriegeskorte N, Simmons WK, Bellgowan PSF et al (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540

    Article  PubMed  CAS  Google Scholar 

  99. Stockburger J, Schmälzle R, Flaisch T et al (2009) The impact of hunger on food cue processing: an event-related brain potential study. Neuroimage [Epub ahead of print]

  100. Tsurugizawa T, Uematsu A, Nakamura E et al (2009) Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut-brain axis. Gastroenterology 137:262–273

    Article  PubMed  Google Scholar 

  101. Stephan E, Pardo JV, Faris PL et al (2003) Functional neuroimaging of gastric distention. J Gastrointest Surg 7:740–749

    Article  PubMed  Google Scholar 

  102. Wang GJ, Tomasi D, Backus W (2008) Gastric distention activates satiety circuitry in the human brain. Neuroimage 39:1824–1831

    Article  PubMed  Google Scholar 

  103. Fox EA (2006) A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Auton Neurosci 126–127:9–29

    Article  PubMed  Google Scholar 

  104. Saunders CJ, de Milander L, Hew-Butler T et al (2006) Dipsogenic genes associated with weight changes during Ironman triathlons. Hum Mol Genet 15:2980–2987

    Article  PubMed  CAS  Google Scholar 

  105. Morris JA Jr, Norris PR, Moore JH et al (2009) Genetic variation in the autonomic nervous system affects mortality: a study of 1,095 trauma patients. J Am Coll Surg 208:663–670

    Article  PubMed  Google Scholar 

  106. Yasuda K, Matsunaga T, Adachi T et al (2006) Adrenergic receptor polymorphisms and autonomic nervous system function in human obesity. Trends Endocrinol Metab 17:269–275

    Article  PubMed  CAS  Google Scholar 

  107. Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  Google Scholar 

  108. Gemma C, Sookoian S, Alvariñas J et al (2009) Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity 17:1032–1039

    Article  PubMed  CAS  Google Scholar 

  109. McCann UD, Szabo Z, Vranesic M et al (2007) Quantitative positron emission tomography studies of the serotonin transporter in humans previously treated with the appetite suppressants fenfluramine or dexfenfluramine. Mol Imaging Biol 9:151–157

    Article  PubMed  Google Scholar 

  110. Smith GP, Jerome C, Norgren R (1985) Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats. Am J Physiol 249(5 Pt 2):R638–R641

    PubMed  CAS  Google Scholar 

  111. Lam TK, Pocai A, Gutierrez-Juarez R et al (2005) Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11:320–327

    Article  PubMed  CAS  Google Scholar 

  112. Warne JP (2009) Shaping the stress response: interplay of palatable food choices, glucocorticoids, insulin and abdominal obesity. Mol Cell Endocrinol 300:137–146

    Article  PubMed  CAS  Google Scholar 

  113. Gatta B, Zuberbuehler C, Arnold M et al (2008) Acute effects of pharmacological modifications of fatty acid metabolism on human satiety. Br J Nutr 16:1–11

    Google Scholar 

  114. Horn CC, Tordoff MG, Friedman MI (2001) Role of vagal afferent innervation in feeding and brain Fos expression produced by metabolic inhibitors. Brain Res 919:198–206

    Article  PubMed  CAS  Google Scholar 

  115. Pontiroli AE, Fossati A, Vedani P et al (2007) Post-surgery adherence to scheduled visits and compliance, more than personality disorders, predict outcome of bariatric restrictive surgery in morbidly obese patients. Obes Surg 17:1492–1497

    Article  PubMed  Google Scholar 

  116. Hollis JF, Gullion CM, Stevens VJ et al (2008) Weight loss during the intensive intervention phase of the weight-loss maintenance trial. Am J Prev Med 35:118–126

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Kral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kral, J.G., Paez, W. & Wolfe, B.M. Vagal Nerve Function in Obesity: Therapeutic Implications. World J Surg 33, 1995–2006 (2009). https://doi.org/10.1007/s00268-009-0138-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-009-0138-8

Keywords

Navigation