Skip to main content
Log in

Development of a Large Animal Model for Investigating Resuscitation After Blast and Hemorrhage

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Blast injuries are an increasing problem owing to the widespread terrorist threat, but hemorrhage remains the second leading cause of civilian trauma death. Against this background, increasing numbers of prehospital and military trauma organizations are advocating a hypotensive approach to resuscitation of the hypovolemic casualty, deliberately aiming not to achieve a normal blood pressure so as not to disturb any newly formed blood clots at the site of a vascular injury.

Methods

There are no data available to guide clinicians as to how best to resuscitate the blast-injured casualty who has also suffered a hemorrhagic injury. A large-scale program was initiated to examine this question and to offer clinical guidance on the optimal resuscitation strategy in such circumstances in terms of volume, type of fluid, speed of resuscitation, and appropriate endpoints. Before such experiments could be undertaken, a novel large animal model of blast and hemorrhage had to be devised and validated. This study outlines the derivation of such a large animal model utilizing terminally anesthetized Large White pigs exposed to a standardized primary blast wave followed by a controlled hemorrhage of 30% of the total blood volume.

Results and conclusion

The preliminary results confirm the reliability and reproducibility of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DePalma RG, Burris DG, Champion HR et al (2005) Blast injuries. N Engl J Med 352(13):1335–1342

    Article  PubMed  CAS  Google Scholar 

  2. Mellor SG, Cooper GJ (1989) Analysis of 828 servicemen killed or injured by explosion in Northern Ireland 1970–84: the Hostile Action Casualty System. Br J Surg 76(10):1006–1010

    Article  PubMed  CAS  Google Scholar 

  3. Leibovici D, Gofrit ON, Stein M et al (1996) Blast injuries: bus versus open-air bombings—a comparative study of injuries in survivors of open-air versus confined-space explosions. J Trauma 41(6):1030–1035

    Article  PubMed  CAS  Google Scholar 

  4. Marti M, Parron M, Baudraxler F et al (2006) Blast injuries from Madrid terrorist bombing attacks on March 11, 2004. Emerg Radiol 13(3):113–122

    Article  PubMed  Google Scholar 

  5. Dearden P (2001) New blast weapons. J R Army Med Corps 147(1):80–86

    PubMed  CAS  Google Scholar 

  6. Cooper GJ, Maynard RL, Cross NL et al (1983) Casualties from terrorist bombings. J Trauma 23(11):955–967

    Article  PubMed  CAS  Google Scholar 

  7. Little RA, Marshall HW, Kirkman E (1989) Attenuation of the acute cardiovascular-responses to hemorrhage by tissue injury in the conscious rat. Q J Exp Physiol 74(6):825–833

    PubMed  CAS  Google Scholar 

  8. Ohnishi M, Kirkman E, Guy RJ et al (2001) Reflex nature of the cardiorespiratory response to primary thoracic blast injury in the anaesthetised rat. Exp Physiol 86(3):357–364

    Article  PubMed  CAS  Google Scholar 

  9. Sawdon M, Ohnishi M, Watkins PE et al (2002) The effects of primary thoracic blast injury and morphine on the response to haemorrhage in the anaesthetised rat. Exp Physiol 87(6):683–689

    Article  PubMed  CAS  Google Scholar 

  10. Argyros GJ (1997) Management of primary blast injury. Toxicology 121(1):105–115

    Article  PubMed  CAS  Google Scholar 

  11. Clemedson CJ, Hultman HI (1954) Air embolism and the cause of death in blast injury. Mil Surgeon 114:424–437

    CAS  Google Scholar 

  12. Benzinger T(1950) Physiologcal effects of blast in air and water. In: German aviation medicine in World War II. US Department of the Air Force, Washington, DC

  13. Rossle R (1950) Pathology of blast effects. In: German aviation medicine in World War II. US Department of the Air Force, Washington, DC

  14. Yee ES, Verrier ED, Thomas AN (1983) Management of air embolism in blunt and penetrating thoracic trauma. J Thorac Cardiovasc Surg 85(5):661–668

    PubMed  CAS  Google Scholar 

  15. American College of Surgeons Committee on Trauma (1997) Advanced Trauma Life Support Program for Doctors. American College of Surgeons, Chicago

  16. Bickell WH, Bruttig SP, Millnamow GA et al (1991) The detrimental effects of intravenous crystalloid after aortotomy in swine. Surgery 110(3):529–536

    PubMed  CAS  Google Scholar 

  17. Burris D, Rhee P, Kaufmann C et al (1999) Controlled resuscitation for uncontrolled hemorrhagic shock. J Trauma 46(2):216–223

    Article  PubMed  CAS  Google Scholar 

  18. Solomonov E, Hirsh M, Yahiya A et al (2000) The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med 28(3):749–754

    Article  PubMed  CAS  Google Scholar 

  19. Sondeen JL, Coppes VG, Holcomb JB (2003) Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma 54(5 Suppl):S110–S117

    PubMed  Google Scholar 

  20. Bickell WH, Wall MJ Jr, Pepe PE et al (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331(17):1105–1109

    Article  PubMed  CAS  Google Scholar 

  21. Hodgetts TJ, Mahoney PE, Evans G et al (eds) (2006) Battlefield advanced life support. Defence Medical Education and Training Agency, UK

  22. Holcomb JB (2003) Fluid resuscitation in modern combat casualty care: lessons learned from Somalia. J Trauma 54(5 Suppl):S46–S51

    PubMed  Google Scholar 

  23. Krausz MM (2003) Fluid resuscitation strategies in the Israeli army. J Trauma 54(5 Suppl):S39–S42

    PubMed  Google Scholar 

  24. Place RJ, Rush RM Jr, Arrington ED (2003) Forward surgical team (FST) workload in a special operations environment: the 250th FST in Operation Enduring Freedom. Curr Surg 60(4):418–422

    Article  PubMed  Google Scholar 

  25. Todd SR, Malinoski D, Muller PJ et al (2007) Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma 62(3):636–639

    Article  PubMed  Google Scholar 

  26. Kortbeek JB, Al Turki SA, Ali J et al (2008) Advanced trauma life support, 8th edition, the evidence for change. J Trauma 64(6):1638–1650

    Article  PubMed  Google Scholar 

  27. Sapsford W, Watts S, Cooper G et al (2007) Recombinant activated factor VII increases survival time in a model of incompressible arterial hemorrhage in the anesthetized pig. J Trauma 62(4):868–879

    Article  PubMed  CAS  Google Scholar 

  28. Cooper GJ, Jonsson A (1997) Protection against blast injury. In: Cooper GJ, Dudley HAF, Gann DS et al (eds) Scientific foundations of trauma. Butterworth-Heinemann, Oxford

    Google Scholar 

  29. Dronen SC, Stern SA, Wang X et al (1993) A comparison of the response of near-fatal acute hemorrhage models with and without a vascular injury to rapid volume expansion. Am J Emerg Med 11(4):331–335

    Article  PubMed  CAS  Google Scholar 

  30. Bush JA, Jensen WN, Cartwright GE et al (1955) Blood volume studies in normal and anemic swine. Am J Physiol 181(9):14

    Google Scholar 

  31. Barcroft H, Edholm OG, McMichael J et al (1944) Post haemorrhagic fainting: study by cardiac output and forearm blood flow. Lancet 1:489–491

    Article  Google Scholar 

  32. Little RA, Randall PE, Redfern WS et al (1984) Components of injury (haemorrhage and tissue ischaemia) affecting cardiovascular reflexes in man and rat. Q J Exp Physiol 69(4):753–762

    PubMed  CAS  Google Scholar 

  33. Evans RG, Ventura S, Dampney RA et al (2001) Neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clin Exp Pharmacol Physiol 28(5–6):479–487

    Article  PubMed  CAS  Google Scholar 

  34. Hannon JP, Bossone CA, Rodkey WG (1985) Splenic red cell sequestration and blood volume measurements in conscious pigs. Am J Physiol 248(3 Pt 2):R293–R301

    PubMed  CAS  Google Scholar 

  35. Kowalenko T, Stern S, Dronen S et al (1992) Improved outcome with hypotensive resuscitation of uncontrolled hemorrhagic shock in a swine model. J Trauma 33(3):349–353

    Article  PubMed  CAS  Google Scholar 

  36. Bilski TR, Baker BC, Grove JR et al (2003) Battlefield casualties treated at Camp Rhino, Afghanistan: lessons learned. J Trauma 54(5):814–821

    Article  PubMed  Google Scholar 

  37. Bohman HR, Stevens RA, Baker BC et al (2005) The US Navy’s forward resuscitative surgery system during operation Iraqi freedom. Mil Med 170(4):297–301

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kirkman.

Additional information

© Crown copyright 2009. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garner, J.P., Watts, S., Parry, C. et al. Development of a Large Animal Model for Investigating Resuscitation After Blast and Hemorrhage. World J Surg 33, 2194–2202 (2009). https://doi.org/10.1007/s00268-009-0105-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-009-0105-4

Keywords

Navigation