Skip to main content
Log in

Basic Principles and Technologies for Deciphering the Genetic Map of Cancer

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

The progress achieved in the field of genomics in recent years is leading medicine to adopt a personalized model in which the knowledge of individual DNA alterations will allow a targeted approach to cancer. Using pancreatic cancer as a model, we discuss herein the fundamentals that need to be considered for the high throughput and global identification of mutations. These include patient-related issues, sample collection, DNA isolation, gene selection, primer design, and sequencing techniques. We also describe the possible applications of the discovery of DNA changes to the approach of this disease and cite preliminary efforts where the knowledge has been translated into the clinical or preclinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sanger F, Nicklen S, Coulson AR (1997) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  2. International Consortium completes Human Genome Project [National Human Genome Research Institute web site]. http://www.genome.gov/11006929 14 April 2003

  3. Guttmacher AE, Collins FS (2003) Welcome to the genomic era. N Engl J Med 349:996–998

    PubMed  CAS  Google Scholar 

  4. 454 Life Sciences and Baylor College of Medicine Complete Sequencing of DNA Project. [454 Life Sciences website] http://www.454.com/news-events/press-releases.asp?display=detail&id=68 Accessed 31 May 2007

  5. Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    PubMed  CAS  Google Scholar 

  6. Kopnin BP (2000) Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry (Mosc) 65:2–27

    CAS  Google Scholar 

  7. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    PubMed  CAS  Google Scholar 

  8. Elledge SJ, Hannon GJ (2005) An open letter to cancer researchers. Science 310:439–441

    PubMed  CAS  Google Scholar 

  9. Heng HH (2007) Cancer genome sequencing: the challenges ahead. Bioessays 29:783–794

    PubMed  Google Scholar 

  10. Varmus H (2006) The new era in cancer research. Science 312:1162–1165

    PubMed  CAS  Google Scholar 

  11. Sjöblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  12. Cancer Sequencing Projects (CSPs) [National Human Genome Research Institute web site]. http://www.genome.gov/19517442

  13. Weir BA, Woo MS, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    PubMed  CAS  Google Scholar 

  14. Collins FS, Barker AD (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am 296:50–57

    Article  PubMed  CAS  Google Scholar 

  15. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    PubMed  CAS  Google Scholar 

  16. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    PubMed  CAS  Google Scholar 

  17. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    PubMed  CAS  Google Scholar 

  18. Paez JG, Jänne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    PubMed  CAS  Google Scholar 

  19. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. LoS Med 2:e73

    Google Scholar 

  20. Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    PubMed  CAS  Google Scholar 

  21. McGuire AL, Gibbs RA (2006) Genetics. No longer de-identified. Science 312:370–371

    PubMed  CAS  Google Scholar 

  22. McGuire AL, Gibbs RA (2006) Currents in contemporary ethics: meeting the growing demands of genetic research. J Law Med Ethics 34:809–812

    PubMed  Google Scholar 

  23. McGuire AL, Caulfield T, Cho MK (2007) Research ethics and the challenge of whole genome sequencing. Nat Rev Gen 9:152–156

    Google Scholar 

  24. Renegar G, Webster CJ, Stuerzebecker S et al (2006) Returning genetic research results to individuals: points to consider. Bioethics 20:24–36

    PubMed  Google Scholar 

  25. Knoppers BM, Joly Y, Simard J et al (2006) The emergence of an ethical duty to disclose genetic research results: international perspectives. Eur J Human Gen 14:1170–1178

    Google Scholar 

  26. MacNeil S, Fernandez C (2006) Informing research participants of research results: analysis of Canadian university based research ethics board policies. J Med Ethics 32:49–54

    PubMed  CAS  Google Scholar 

  27. Kohane IS, Mandi KD, Taylor PL et al (2007) Reestablishing the researcher–patient compact. Science 316:836–837

    PubMed  CAS  Google Scholar 

  28. Rubin AF, Green P (2007) Comment on “the consensus coding sequences of human breast and colorectal cancers”. Science 317:1500

    PubMed  CAS  Google Scholar 

  29. Getz G, Höfling H, Mesirov JP et al (2007) Comment on “the consensus coding sequences of human breast and colorectal cancers”. Science 317:1500

    PubMed  CAS  Google Scholar 

  30. Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6:1186–1197

    PubMed  CAS  Google Scholar 

  31. Check E (2007) Cancer atlas maps out sample worries. Nature 447:1036–1037

    PubMed  CAS  Google Scholar 

  32. Compton C (2007) Getting to personalized cancer medicine: taking out the garbage. Cancer 110:1641–1643

    PubMed  Google Scholar 

  33. Tu SM, Lin SH, Logothetis CJ (2002) Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol 3:508–513

    PubMed  CAS  Google Scholar 

  34. Woodruff MF (1983) Cellular heterogeneity in tumours. Br J Cancer 47:589–594

    PubMed  CAS  Google Scholar 

  35. Kim JH, Tuziak T, Hu L et al (2005) Alterations in transcription clusters underlie development of bladder cancer along papillary and nonpapillary pathways. Lab Invest 85:532–549

    PubMed  CAS  Google Scholar 

  36. The Cancer Genome Atlas Biospecimen Selection Process. The Cancer Genome Atlas website. http://cancergenome.nih.gov/components/hcbcr_process.asp

  37. Murray GI (2007) An overview of laser microdissection technologies. Acta Histochem 109:171–176

    PubMed  Google Scholar 

  38. Mager SR, Oomen MH, Morente MM et al (2007) Standard operating procedure for the collection of fresh frozen tissue samples. Eur J Cancer 43:828–834

    PubMed  CAS  Google Scholar 

  39. Gallegos Ruiz MI, Floor K, Rijmen F et al (2007) EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens. Cell Oncol 29:257–264

    PubMed  CAS  Google Scholar 

  40. Ferrer I, Armstrong J, Capellari S et al (2007) Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol 17:297–303

    PubMed  CAS  Google Scholar 

  41. Andreassen CN, Sørensen FB, Overgaard J et al (2004) Optimisation and validation of methods to assess single nucleotide polymorphisms (SNPs) in archival histological material. Radiother Oncol 72:351–356

    PubMed  CAS  Google Scholar 

  42. Lizardi PM, Huang X, Zhu Z et al (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232

    PubMed  CAS  Google Scholar 

  43. Dean FB, Nelson JR, Giesler TL et al (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099

    PubMed  CAS  Google Scholar 

  44. Pinard R, de Winter A, Sarkis GJ et al (2006) Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics 7:216

    PubMed  Google Scholar 

  45. Genomic DNA Preparation from RNAlater™ Preserved Tissues [Ambion website]. (2008) http://www.ambion.com/techlib/misc/genomicDNA_rnalater.html

  46. Catalogue of somatic mutations in cancer [Sanger Institute COSMIC website] http://www.sanger.ac.uk/genetics/CGP/cosmic/

  47. Pancreatic Cancer Gene Database [PCGD website] http://www.bioinformatics.org/pcgdb/

  48. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    PubMed  CAS  Google Scholar 

  49. Futreal PA, Coin L, Marshall M et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    PubMed  CAS  Google Scholar 

  50. Brentnall TA (2005) Management strategies for patients with hereditary pancreatic cancer. Curr Treat Options Oncol 6:437–445

    PubMed  Google Scholar 

  51. Berger DH, Fisher WE (2002) Inherited pancreatic cancer syndromes. In: Evans DB, Pisters PWT, Abbruzzese JL (eds) M.D. Anderson solid tumor oncology series-pancreatic cancer. Springer, New York, pp 73–82

    Google Scholar 

  52. Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    PubMed  CAS  Google Scholar 

  53. Buchholz M, Kestler HA, Bauer A et al (2005) Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res 11:8048–8054

    PubMed  CAS  Google Scholar 

  54. Higgins ME, Claremont M, Major JE et al (2007) CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res 35:D721–D726

    PubMed  CAS  Google Scholar 

  55. Resequencing Resource http://cbio.mskcc.org/cancergenes/index.php

  56. Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    PubMed  CAS  Google Scholar 

  57. Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    PubMed  CAS  Google Scholar 

  58. Repeat Masker (2003) [computer program] Institute for Systems Biology http://www.repeatmasker.org/

  59. Single Nucleotide Polymorphism database [NCBI website]. http://www.ncbi.nlm.nih.gov/projects/SNP/ Accessed 17 Jan 2008

  60. Primer3. Howard Hughes Medical Institute [Primer3 website]. http://frodo.wi.mit.edu/ Accessed 7 Feb 2007

  61. UCSC In-Silico PCR [UCSC Genome Bioinformatics website]. http://genome.ucsc.edu/cgi-bin/hgPcr?command=start

  62. Parameswaran P, Jalili R, Tao L et al (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:e130

    PubMed  Google Scholar 

  63. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 28:363–365

    Google Scholar 

  64. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 37:376–380

    Google Scholar 

  65. Thomas RK, Nickerson E, Simons JF et al (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 12:852–855

    PubMed  CAS  Google Scholar 

  66. Solexa Ltd (2004) Pharmacogenomics 5:433–438

    Google Scholar 

  67. Bennett ST, Barnes C, Cox A et al (2005) Toward the 1, 000 dollars human genome. Pharmacogenomics 6:373–382

    PubMed  CAS  Google Scholar 

  68. Solexa sequencing Technology Illumina website. http://www.illumina.com/pages.ilmn?ID=203

  69. Dutt A, Beroukhim R (2007) Single nucleotide polymorphism array analysis of cancer. Curr Opin Oncol 19:43–49

    PubMed  CAS  Google Scholar 

  70. Calhoun ES, Hucl T, Gallmeier E et al (2006) Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays. Cancer Res 66:7920–7928

    PubMed  CAS  Google Scholar 

  71. Harada T, Chelala C, Bhakta V et al (2008) Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene 27:1951–1960

    PubMed  CAS  Google Scholar 

  72. Cargill M, Altshuler D, Ireland J et al (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238 (erratum Nat Genet 23:373)

    Google Scholar 

  73. Kruglyak L, Nickerson DA (2001) Variation is the spice of life. Nat Genet 27:234–236

    PubMed  CAS  Google Scholar 

  74. Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    PubMed  CAS  Google Scholar 

  75. Bernig T, Chanock SJ (2006) Challenges of SNP genotyping and genetic variation: its future role in diagnosis and treatment of cancer. Expert Rev Mol Diagn 6:319–331

    PubMed  CAS  Google Scholar 

  76. Abraham J, Earl HM, Pharoah PD, Caldas C (2006) Pharmacogenetics of cancer chemotherapy. Biochim Biophys Acta 1766:168–183

    PubMed  CAS  Google Scholar 

  77. Bernig T, Chanock SJ (2006) Challenges of SNP genotyping and genetic variation: its future role in diagnosis and treatment of cancer. Expert Rev Mol Diagn 6:319–331

    PubMed  CAS  Google Scholar 

  78. West CM, Elliott RM, Burnet NG (2007) The genomics revolution and radiotherapy. Clin Oncol (R Coll Radiol) 19:470–480

    CAS  Google Scholar 

  79. Imyanitov EN, Togo AV, Hanson KP (2004) Searching for cancer-associated gene polymorphisms: promises and obstacles. Cancer Lett 204:3–14

    PubMed  CAS  Google Scholar 

  80. Bodmer WF, Bailey CJ, Bodmer J et al (1987) Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 19;32:614–616

    Google Scholar 

  81. Cannon-Albright LA, Goldgar DE, Meyer LJ et al (1992) Assignment of a locus for familial melanoma, MLM, to chromosome 9p13–p22. Science 258:1148–1152

    PubMed  CAS  Google Scholar 

  82. Wooster R, Neuhausen SL, Mangion J et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265:2088–2090

    PubMed  CAS  Google Scholar 

  83. Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8:1–12

    PubMed  CAS  Google Scholar 

  84. Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7:139–146

    PubMed  CAS  Google Scholar 

  85. Beckman RA, Loeb LA (2005) Genetic instability in cancer: theory and experiment. Semin Cancer Biol 15:423–435

    PubMed  CAS  Google Scholar 

  86. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  87. Venkatesan RN, Bielas JH, Loeb LA (2006) Generation of mutator mutants during carcinogenesis. DNA Repair 5:294–302

    PubMed  CAS  Google Scholar 

  88. Kimchi-Sarfaty C, Oh JM, Kim IW et al (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    PubMed  CAS  Google Scholar 

  89. McClintock D, Ratner D, Lokuge M et al (2007) The mutant form of Lamin A that causes Hutchinson-Gilford Progeria is a biomarker of cellular aging in human skin. PLoS ONE 2:e1269

    PubMed  Google Scholar 

  90. Conne B, Stutz A, Vassalli JD (2000) The 3’ untranslated region of messenger RNA: a molecular “hotspot” for pathology? Nat Med 6:637–641

    PubMed  CAS  Google Scholar 

  91. Duan J, Wainwright MS, Comeron JM et al (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12:205–216

    PubMed  CAS  Google Scholar 

  92. Hoogendoorn B, Coleman SL, Guy CA et al (2003) Functional analysis of human promoter polymorphisms. Hum Mol Genet 12:2249–2254

    PubMed  CAS  Google Scholar 

  93. Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396

    PubMed  CAS  Google Scholar 

  94. Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    PubMed  CAS  Google Scholar 

  95. Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 14:143–149

    PubMed  CAS  Google Scholar 

  96. Hardenbol P, Yu F, Belmont J et al (2005) Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res 15:269–275

    PubMed  CAS  Google Scholar 

  97. Bell PA, Chaturvedi S, Gelfand CA et al (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 74:76–77

    Google Scholar 

  98. Iplex Gold Review [Sequenom website] http://www.sequenom.com/Genetic-Analysis/Applications/iPLEX-Genotyping/iPLEX-Overview.aspx

  99. Fan JB, Oliphant A, Shen R et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    PubMed  CAS  Google Scholar 

  100. Genechip Arrays [Affymetrix website]. http://www.affymetrix.com/products/arrays/index.affx

  101. Gunderson KL, Steemers FJ, Lee G et al (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    PubMed  CAS  Google Scholar 

  102. van der Heijden MS, Kern SE (2005) Molecular genetic alterations in cancer-associated genes. In: Von Hoff DD, Evans DB, Hruban RH (eds) Pancreatic cancer. Jones and Bartlett, Sandbury, MA, pp 31–41

    Google Scholar 

  103. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57:2140–2143

    PubMed  CAS  Google Scholar 

  104. Hruban RH, Wilentz RE, Kern SE (2000) Genetic progression in the pancreatic ducts. Am J Pathol 156:1821–1825

    PubMed  CAS  Google Scholar 

  105. Hruban RH, Yeo CJ, Kem SE (2002) Pancreatic cancer. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer, 2nd edn edn. McGraw-Hill, New York, pp 659–673

    Google Scholar 

  106. MacLeod SL, Chowdhury P (2006) The genetics of nicotine dependence: relationship to pancreatic cancer. World J Gastroenterol 12:7433–7439

    PubMed  CAS  Google Scholar 

  107. Porta M, Malats N, Jariod M et al (1999) Serum concentrations of organochlorine compounds and K-ras mutations in exocrine pancreatic cancer. PANKRAS II Study Group. Lancet 354:2125–2129

    PubMed  CAS  Google Scholar 

  108. Alguacil J, Porta M, Kauppinen T et al (2003) KRAS II Study Group. Occupational exposure to dyes, metals, polycyclic aromatic hydrocarbons and other agents and K-ras activation in human exocrine pancreatic cancer. Int J Cancer 107:635–641

    PubMed  CAS  Google Scholar 

  109. Larsson SC, Giovannucci E, Wolk A (2006) Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology 131:1271–1283

    PubMed  CAS  Google Scholar 

  110. Jiao L, Bondy ML, Hassan MM et al (2007) Glutathione S-transferase gene polymorphisms and risk and survival of pancreatic cancer. Cancer 109:840–848

    PubMed  CAS  Google Scholar 

  111. Chen J, Li D, Wei C et al (2007) Aurora-A and p16 polymorphisms contribute to an earlier age at diagnosis of pancreatic cancer in Caucasians. Clin Cancer Res 13:3100–3104

    PubMed  CAS  Google Scholar 

  112. Jiao L, Hassan MM, Bondy ML et al (2007) The XPD Asp312Asn and Lys751Gln polymorphisms, corresponding haplotype, and pancreatic cancer risk. Cancer Lett 245:61–68

    PubMed  CAS  Google Scholar 

  113. Jiao L, Hassan MM, Bondy ML et al (2007) XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer. Am J Gastroenterol 16:2379–2386

    CAS  Google Scholar 

  114. Jiao L, Bondy ML, Hassan MM et al (2006) Selected polymorphisms of DNA repair genes and risk of pancreatic cancer. Cancer Detect Prev 30:284–291

    PubMed  CAS  Google Scholar 

  115. Rogers CD, Couch FJ, Brune K et al (2004) Genetics of the FANCA gene in familial pancreatic cancer. J Med Genet 41:e126

    PubMed  CAS  Google Scholar 

  116. Pogue-Geile KL, Chen R, Bronner MP, Crnogorac-Jurcevic T et al (2006) Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med 3:e516

    PubMed  Google Scholar 

  117. Berthelemy P, Bouisson M, Escourrou J et al (1995) Identification of K-ras mutations in pancreatic juice in the early diagnosis of pancreatic cancer. Ann Intern Med 123:188–191

    PubMed  CAS  Google Scholar 

  118. van Heek T, Rader AE, Offerhaus JA et al (2002) K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. Am J Clin Pathol 117:755–765

    PubMed  Google Scholar 

  119. Takahashi K, Yamao K, Okubo K et al (2005) Differential diagnosis of pancreatic cancer and focal pancreatitis by using EUS-guided FNA. Gastrointest Endosc 61:76–79

    PubMed  Google Scholar 

  120. Itoi T, Takei K, Sofuni A et al (2005) Immunohistochemical analysis of p53 and MIB–1 in tissue specimens obtained from endoscopic ultrasonography-guided fine needle aspiration biopsy for the diagnosis of solid pancreatic masses. Oncol Rep 13:229–234

    PubMed  CAS  Google Scholar 

  121. Lohr M, Muller P, Mora J et al (2001) p53 and K-ras mutations in pancreatic juice samples from patients with chronic pancreatitis. Gastrointest Endosc 53:734–743

    PubMed  CAS  Google Scholar 

  122. Pugliese V, Pujic N, Saccomanno S et al (2001) Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cytologic studies and K-ras-2 codon 12 molecular analysis in 47 cases. Gastrointest Endosc 54:595–599

    PubMed  CAS  Google Scholar 

  123. Berger DH, Chang H, Wood M et al (1999) Mutational activation of K-ras in nonneoplastic exocrine pancreatic lesions in relation to cigarette smoking status. Cancer 85:326–332

    PubMed  CAS  Google Scholar 

  124. Caldas C, Hahn SA, da Costa LT et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32

    PubMed  CAS  Google Scholar 

  125. Kalthoff H, Schmiegel W, Roeder C et al (2003) p53 and K-ras alterations in pancreatic epithelial cell lesions. Oncogene 8:289–298

    Google Scholar 

  126. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57:2140–2143

    PubMed  CAS  Google Scholar 

  127. Tada M, Omata M, Kawai S et al (1993) Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 53:2472–2474

    PubMed  CAS  Google Scholar 

  128. Ohtsubo K, Watanabe H, Yamaguchi Y et al (2003) Abnormalities of tumor suppressor gene p16 in pancreatic carcinoma: immunohistochemical and genetic findings compared with clinicopathological parameters. J Gastroenterol 38:663–671

    PubMed  CAS  Google Scholar 

  129. Dong M, Ma G, Tu W et al (2003) Clinicopathological significance of p53 and mdm2 protein expression in human pancreatic cancer. World J Gastroenterol 11:2162–2165

    Google Scholar 

  130. Yokoyama M, Yamanaka Y, Friess H et al (1994) p53 expression in human pancreatic cancer correlates with enhanced biological aggressiveness. Anticancer Res 14:2477–2483

    PubMed  CAS  Google Scholar 

  131. Ghaneh P, Greenhalf W, Humphreys M et al (2001) Adenovirus-mediated transfer of p53 and p16(INK4a) results in pancreatic cancer regression in vitro and in vivo. Gene Ther 8:199–208

    PubMed  CAS  Google Scholar 

  132. Tascilar M, Skinner HG, Rosty C et al (2001) The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res 7:4115–4121

    PubMed  CAS  Google Scholar 

  133. Li D, Li Y, Jiao L et al (2007) Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer 120:1748–1754

    PubMed  CAS  Google Scholar 

  134. Li D, Liu H, Jiao L et al (2006) Significant effect of homologous recombination DNA repair gene polymorphisms on pancreatic cancer survival. Cancer Res 66:3323–3330

    PubMed  CAS  Google Scholar 

  135. Li D, Frazier M, Evans DB et al (2006) Single nucleotide polymorphisms of RecQ1, RAD54L, and ATM genes are associated with reduced survival of pancreatic cancer. J Clin Oncol 24:1720–1728

    PubMed  CAS  Google Scholar 

  136. Lee J, Jang KT, Ki CS et al (2007) Impact of epidermal growth factor receptor (EGFR) kinase mutations, EGFR gene amplifications, and KRAS mutations on survival of pancreatic adenocarcinoma. Cancer 109:1561–1569

    PubMed  CAS  Google Scholar 

  137. Ueno H, Kiyosawa K, Kaniwa N (2007) Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy? Br J 97:145–151

    CAS  Google Scholar 

  138. Myers SN, Goyal RK, Roy JD et al (2006) Functional single nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. Pharmacogenet Genomics 16:315–320

    PubMed  CAS  Google Scholar 

  139. Kroep JR, Loves WJ, van der Wilt CL et al (2002) Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther 1:371–376

    PubMed  CAS  Google Scholar 

  140. Gross E, Seck K, Neubauer S et al (2003) High-throughput genotyping by DHPLC of the dihydropyrimidine dehydrogenase gene implicated in (fluoro)pyrimidine catabolism. Int J Oncol 22:325–332

    PubMed  CAS  Google Scholar 

  141. Pullarkat ST, Stoehlmacher J, Ghaderi V et al (2001) Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 1:65–70

    PubMed  CAS  Google Scholar 

  142. Stoehlmacher J, Ghaderi V, Iobal S et al (2001) A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res 21:3075–3079

    PubMed  CAS  Google Scholar 

  143. Ryu JS, Hong YC, Han HS et al (2004) Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer 44:311–316

    PubMed  Google Scholar 

  144. Park DJ, Stoehlmacher J, Zhang W et al (2001) A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res 61:8654–8658

    PubMed  CAS  Google Scholar 

  145. van der Heijden MS, Brody JR, Dezentje DA et al (2005) In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor. Clin Cancer Res 11:7508–7515

    PubMed  Google Scholar 

  146. Sebti SM, Adjei AA (2004) Farnesyltransferase inhibitors. Semin Oncol 31:28–39

    PubMed  CAS  Google Scholar 

  147. Van Cutsem E, van de Velde H, Karasek P et al (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22:1430–1438

    Google Scholar 

  148. GI-4000 for mutated-Ras mediated cancers [GlobeImmune website]. http://www.globeimmune.com/index.php

  149. Ng SSW, Tsao MS, Chow S et al (2000) Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res 60:5451–5455

    PubMed  CAS  Google Scholar 

  150. Moore MJ, Goldstein D, Hamm J et al (2007) National Cancer Institute of Canada Clinical Trials Group. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    PubMed  CAS  Google Scholar 

  151. Tzeng CW, Frolov A, Frolova N et al (2007) Pancreatic cancer epidermal growth factor receptor (EGFR) intron 1 polymorphism influences postoperative patient survival and in vitro erlotinib response. Ann Surg Oncol 14:2150–2158

    PubMed  Google Scholar 

  152. Brand RE, Lerch MM, Rubinstein WS et al (2007) Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut 56:1460–1469

    PubMed  Google Scholar 

  153. Canto MI (2007) Strategies for screening for pancreatic adenocarcinoma in high-risk patients. Semin Oncol 34:295–302

    PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Effie and Wofford Cain Foundation. The authors acknowledge Dr. Yi Han for her input on the Solexa technology, Dr. Amy L. McGuire for her comments on ethical issues, Mrs. Katie Elsbury for editorial support, Mrs. Sally Hodges for her assistance with patient-related issues, and all the people at the Human Genome Sequencing Center who made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Gingras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voidonikolas, G., Kreml, S.S., Chen, C. et al. Basic Principles and Technologies for Deciphering the Genetic Map of Cancer. World J Surg 33, 615–629 (2009). https://doi.org/10.1007/s00268-008-9851-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-008-9851-y

Keywords

Navigation