Skip to main content

MicroRNAs: Control and Loss of Control in Human Physiology and Disease

Abstract

Analysis of the human genome indicates that a large fraction of the genome sequences are RNAs that do not encode any proteins, also known as non-coding RNAs. MicroRNAs (miRNAs) are a group of small non-coding RNA molecules 20–22 nucleotides (nt) in length that are predicted to control the activity of approximately 30% of all protein-coding genes in mammals. miRNAs play important roles in many diseases, including cancer, cardiovascular disease, and immune disorders. The expression of miRNAs can be regulated by epigenetic modification, DNA copy number change, and genetic mutations. miRNAs can serve as a valuable therapeutic target for a large number of diseases. For miRNAs with oncogenic capabilities, potential therapies include miRNA silencing, antisense blocking, and miRNA modifications. For miRNAs with tumor suppression functions, overexpression of those miRNAs might be a useful strategy to inhibit tumor growth. In this review, we discuss the current progress of miRNA research, regulation of miRNA expression, prediction of miRNA targets, and regulatory role of miRNAs in human physiology and diseases, with a specific focus on miRNAs in pancreatic cancer, liver cancer, colorectal cancer, cardiovascular disease, the immune system, and infectious disease. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in miRNAs as important mediators in human physiology and diseases.

This is a preview of subscription content, access via your institution.

References

  1. Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    PubMed  CAS  Google Scholar 

  2. Wadman M (2008) James Watson’s genome sequenced at high speed. Nature 452:788

    PubMed  CAS  Google Scholar 

  3. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17–R29

    PubMed  CAS  Google Scholar 

  4. Huang C, Li M, Chen C et al (2008) Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 12:637–645

    PubMed  CAS  Google Scholar 

  5. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    PubMed  CAS  Google Scholar 

  6. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    PubMed  CAS  Google Scholar 

  7. Martin SE, Caplen NJ (2007) Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 8:81–108

    PubMed  CAS  Google Scholar 

  8. Micklem DR, Lorens JB (2007) RNAi screening for therapeutic targets in human malignancies. Curr Pharm Biotechnol 8:337–343

    PubMed  CAS  Google Scholar 

  9. Sevignani C, Calin GA, Siracusa LD et al (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    PubMed  CAS  Google Scholar 

  10. Rychahou PG, Jackson LN, Farrow BJ et al (2006) RNA interference: mechanisms of action and therapeutic consideration. Surgery 140:719–725

    PubMed  Google Scholar 

  11. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    PubMed  CAS  Google Scholar 

  12. Amarzguioui M, Rossi JJ, Kim D (2005) Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett 579:5974–5981

    PubMed  CAS  Google Scholar 

  13. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    PubMed  CAS  Google Scholar 

  14. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    PubMed  CAS  Google Scholar 

  15. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    PubMed  CAS  Google Scholar 

  16. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    PubMed  CAS  Google Scholar 

  17. Griffiths-Jones S, Saini HK, van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–158

    PubMed  CAS  Google Scholar 

  18. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–111

    PubMed  CAS  Google Scholar 

  19. Ambros V, Bartel B, Bartel DP et al (2003) A uniform system for microRNA annotation. RNA 9:277–279

    PubMed  CAS  Google Scholar 

  20. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    PubMed  CAS  Google Scholar 

  21. Cummins JM, Velculescu VE (2006) Implications of micro-RNA profiling for cancer diagnosis. Oncogene 25:6220–6227

    PubMed  CAS  Google Scholar 

  22. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    PubMed  CAS  Google Scholar 

  23. Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267:529–535

    PubMed  CAS  Google Scholar 

  24. Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    PubMed  Google Scholar 

  25. Nielsen CB, Shomron N, Sandberg R et al (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894–1910

    PubMed  CAS  Google Scholar 

  26. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    PubMed  CAS  Google Scholar 

  27. Miranda KC, Huynh T, Tay Y et al (2006) Pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    PubMed  CAS  Google Scholar 

  28. Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197

    PubMed  CAS  Google Scholar 

  29. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    PubMed  CAS  Google Scholar 

  30. Lim LP, Lau NC, Weinstein EG et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    PubMed  CAS  Google Scholar 

  31. Lai EC (2002) MicroRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    PubMed  CAS  Google Scholar 

  32. Gusev Y, Schmittgen TD, Lerner M et al (2007) Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in cancer. BMC Bioinformatics 8:S16

    PubMed  Google Scholar 

  33. Didiano D, Hobert O (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 13:849–851

    PubMed  CAS  Google Scholar 

  34. Schuster P, Fontana W, Stadler PF et al (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc Biol Sci 255:279–284

    PubMed  CAS  Google Scholar 

  35. Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    PubMed  CAS  Google Scholar 

  36. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    PubMed  CAS  Google Scholar 

  37. Fukuda Y, Kawasaki H, Taira K (2005) Exploration of human miRNA target genes in neuronal differentiation. Nucleic Acids Symp Ser (Oxf), 341–342

  38. Lewis HD, Perez Revuelta BI, Nadin A et al (2003) Catalytic site-directed gamma-secretase complex inhibitors do not discriminate pharmacologically between Notch S3 and beta-APP cleavages. Biochemistry 42:7580–7586

    PubMed  CAS  Google Scholar 

  39. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054

    PubMed  CAS  Google Scholar 

  40. Shi XB, Xue L, Yang J et al (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 104:19983–19988

    PubMed  CAS  Google Scholar 

  41. Gramantieri L, Ferracin M, Fornari F et al (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67:6092–6099

    PubMed  CAS  Google Scholar 

  42. Mitomo S, Maesawa C, Ogasawara S et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99:280–286

    PubMed  CAS  Google Scholar 

  43. Felicetti F, Errico MC, Bottero L et al (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68:2745–2754

    PubMed  CAS  Google Scholar 

  44. Hurteau GJ, Carlson JA, Spivack SD et al (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67:7972–7976

    PubMed  CAS  Google Scholar 

  45. Barbarotto E, Schmittgen TD, Calin GA (2008) MicroRNAs and cancer: profile, profile, profile. Int J Cancer 122:969–977

    PubMed  CAS  Google Scholar 

  46. Yang H, Kong W, He L et al (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68:425–433

    PubMed  CAS  Google Scholar 

  47. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    PubMed  CAS  Google Scholar 

  48. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    PubMed  CAS  Google Scholar 

  49. Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102:3627–3632

    PubMed  CAS  Google Scholar 

  50. Tam W, Dahlberg JE (2006) miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 45:211–212

    PubMed  CAS  Google Scholar 

  51. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    PubMed  CAS  Google Scholar 

  52. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    PubMed  CAS  Google Scholar 

  53. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    PubMed  CAS  Google Scholar 

  54. Cimmino A, Calin GA, Fabbri M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    PubMed  CAS  Google Scholar 

  55. Fabbri M, Garzon R, Cimmino A et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    PubMed  CAS  Google Scholar 

  56. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722

    PubMed  CAS  Google Scholar 

  57. Corney DC, Flesken-Nikitin A, Godwin AK et al (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438

    PubMed  CAS  Google Scholar 

  58. Tazawa H, Tsuchiya N, Izumiya M et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477

    PubMed  CAS  Google Scholar 

  59. Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029

    PubMed  CAS  Google Scholar 

  60. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    PubMed  CAS  Google Scholar 

  61. Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095

    PubMed  CAS  Google Scholar 

  62. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    PubMed  CAS  Google Scholar 

  63. Huang Q, Gumireddy K, Schrier M et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10:202–210

    PubMed  CAS  Google Scholar 

  64. Hruban RH, van Mansfeld AD, Offerhaus GJ et al (1993) K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 143:545–554

    PubMed  CAS  Google Scholar 

  65. van Heek T, Rader AE, Offerhaus GJ et al (2002) K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. Am J Clin Pathol 117:755–765

    PubMed  Google Scholar 

  66. Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    PubMed  CAS  Google Scholar 

  67. Zhang L, Chenwei L, Mahmood R et al (2006) Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. Cancer Res 66:898–906

    PubMed  CAS  Google Scholar 

  68. Szafranska AE, Davison TS, John J et al (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26:4442–4452

    PubMed  CAS  Google Scholar 

  69. Roldo C, Missiaglia E, Hagan JP et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24:4677–4684

    PubMed  CAS  Google Scholar 

  70. Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    PubMed  CAS  Google Scholar 

  71. Vivekanandan P, Singh OV (2008) High-dimensional biology to comprehend hepatocellular carcinoma. Expert Rev Proteomics 5:45–60

    PubMed  CAS  Google Scholar 

  72. Xu XR, Huang J, Xu ZG et al (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 98:15089–15094

    PubMed  CAS  Google Scholar 

  73. Iizuka N, Oka M, Yamada-Okabe H et al (2003) Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis. Oncogene 22:3007–3014

    PubMed  CAS  Google Scholar 

  74. Girard M, Jacquemin E, Munnich A et al (2008) miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48:648–656

    PubMed  CAS  Google Scholar 

  75. Jacob JR, Sterczer A, Toshkov IA et al (2004) Integration of woodchuck hepatitis and N-myc rearrangement determine size and histologic grade of hepatic tumors. Hepatology 39:1008–1016

    PubMed  CAS  Google Scholar 

  76. Harada H, Nagai H, Ezura Y et al (2002) Down-regulation of a novel gene, DRLM, in human liver malignancy from 4q22 that encodes a NAP-like protein. Gene 296:171–177

    PubMed  CAS  Google Scholar 

  77. Datta J, Kutay H, Nasser MW et al (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68:5049–5058

    PubMed  CAS  Google Scholar 

  78. Wong QW, Lung RW, Law PT et al (2008) MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 135:257–269

    PubMed  CAS  Google Scholar 

  79. Si ML, Zhu S, Wu H et al (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803

    PubMed  CAS  Google Scholar 

  80. Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    PubMed  CAS  Google Scholar 

  81. Zhu S, Si ML, Wu H et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282:14328–14336

    PubMed  CAS  Google Scholar 

  82. Michael MZ, SM OC, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  83. Cummins JM, He Y, Leary RJ et al (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103:3687–3692

    PubMed  CAS  Google Scholar 

  84. Akao Y, Nakagawa Y, Naoe T (2007) MicroRNA-143 and -145 in colon cancer. DNA Cell Biol 26:311–320

    PubMed  CAS  Google Scholar 

  85. Toyota M, Suzuki H, Sasaki Y et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    PubMed  CAS  Google Scholar 

  86. Grady WM, Parkin RK, Mitchell PS et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    PubMed  CAS  Google Scholar 

  87. Yang WJ, Yang DD, Na S et al (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280:9330–9335

    PubMed  CAS  Google Scholar 

  88. Shilo S, Roy S, Khanna S et al (2008) Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arterioscler Thromb Vasc Biol 28:471–477

    PubMed  CAS  Google Scholar 

  89. Kuehbacher A, Urbich C, Zeiher AM et al (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101:59–68

    PubMed  CAS  Google Scholar 

  90. Poliseno L, Tuccoli A, Mariani L et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

    PubMed  CAS  Google Scholar 

  91. Martin MM, Buckenberger JA, Jiang J et al (2007) The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem 282:24262–24269

    PubMed  CAS  Google Scholar 

  92. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–420

    PubMed  CAS  Google Scholar 

  93. Harris TA, Yamakuchi M, Ferlito M et al (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521

    PubMed  CAS  Google Scholar 

  94. O’Connell RM, Taganov KD, Boldin MP et al (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609

    PubMed  Google Scholar 

  95. Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    PubMed  CAS  Google Scholar 

  96. Ji R, Cheng Y, Yue J et al (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    PubMed  CAS  Google Scholar 

  97. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    PubMed  CAS  Google Scholar 

  98. Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    PubMed  CAS  Google Scholar 

  99. Monticelli S, Ansel KM, Xiao C et al (2005) MicroRNA profiling of the murine hematopoietic system. Genome Biol 6:R71

    PubMed  Google Scholar 

  100. Wu H, Neilson JR, Kumar P et al (2007) miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE 2:e1020

    PubMed  Google Scholar 

  101. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    PubMed  CAS  Google Scholar 

  102. Kaech SM, Hemby S, Kersh E et al (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111:837–851

    PubMed  CAS  Google Scholar 

  103. Neilson JR, Zheng GX, Burge CB et al (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589

    PubMed  CAS  Google Scholar 

  104. Muljo SA, Ansel KM, Kanellopoulou C et al (2005) Aberrant T cell differentiation in the absence of Dicer. J Ext Med 202:261–269

    CAS  Google Scholar 

  105. Taganov KD, Boldin MP, Chang KJ et al (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486

    PubMed  CAS  Google Scholar 

  106. Ramkissoon SH, Mainwaring LA, Ogasawara Y et al (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30:643–647

    PubMed  CAS  Google Scholar 

  107. Koralov SB, Muljo SA, Galler GR et al (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132:860–874

    PubMed  CAS  Google Scholar 

  108. Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 102:10381–10386

    PubMed  CAS  Google Scholar 

  109. Khabar KS (2007) Rapid transit in the immune cells: the role of mRNA turnover regulation. J Leuk Biol 81:1335–1344

    CAS  Google Scholar 

  110. Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    PubMed  CAS  Google Scholar 

  111. Cobb BS, Hertweck A, Smith J et al (2006) A role for Dicer in immune regulation. J Exp Med 203:2519–2527

    PubMed  CAS  Google Scholar 

  112. Turner M, Vigorito E (2008) Regulation of B- and T-cell differentiation by a single microRNA. Biochem Soc Trans 36:531–533

    PubMed  CAS  Google Scholar 

  113. Tili E, Michaille JJ, Cimino A et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    PubMed  CAS  Google Scholar 

  114. Perry MM, Moschos SA, Williams AE et al (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180:5689–5698

    PubMed  CAS  Google Scholar 

  115. Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    PubMed  CAS  Google Scholar 

  116. Fazi F, Rosa A, Fatica A et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    PubMed  CAS  Google Scholar 

  117. Fukao T, Fukuda Y, Kiga K et al (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129:617–631

    PubMed  CAS  Google Scholar 

  118. Moschos SA, Williams AE, Perry MM et al (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC genomics 8:240

    PubMed  Google Scholar 

  119. Xiao C, Srinivasan L, Calado DP et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414

    PubMed  CAS  Google Scholar 

  120. Mao X, Kim BE, Wang F et al (2007) A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J Biol Chem 282:6992–7000

    PubMed  CAS  Google Scholar 

  121. van den Berg A, Kroesen BJ, Kooistra K et al (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37:20–28

    PubMed  Google Scholar 

  122. Tam W, Hughes SH, Hayward WS et al (2002) Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76:4275–4286

    PubMed  CAS  Google Scholar 

  123. O’Connell RM, Rao DS, Chaudhuri AA et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594

    PubMed  Google Scholar 

  124. Metzler M, Wilda M, Busch K et al (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39:167–169

    PubMed  CAS  Google Scholar 

  125. Thai TH, Calado DP, Casola S et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    PubMed  CAS  Google Scholar 

  126. Rodriguez A, Vigorito E, Clare S et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    PubMed  CAS  Google Scholar 

  127. Klein U, Dalla-Favera R (2008) Germinal centers: role in B-cell physiology and malignancy. Nat Rev 8:22–33

    Article  CAS  Google Scholar 

  128. Hwang ES, White IA, Ho IC (2002) An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines. Proc Natl Acad Sci USA 99:13026–13030

    PubMed  CAS  Google Scholar 

  129. Calame K (2007) MicroRNA-155 function in B Cells. Immunity 27:825–827

    PubMed  CAS  Google Scholar 

  130. Vigorito E, Perks KL, Abreu-Goodger C et al (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859

    PubMed  CAS  Google Scholar 

  131. Blumenthal MN, Langefeld CD, Barnes KC et al (2006) A genome-wide search for quantitative trait loci contributing to variation in seasonal pollen reactivity. J Allergy Clin Immunol 117:79–85

    PubMed  CAS  Google Scholar 

  132. Bu LM, Bradley M, Soderhall C et al (2006) Susceptibility loci for atopic dermatitis on chromosome 21 in a Swedish population. Allergy 61:617–621

    PubMed  CAS  Google Scholar 

  133. Parrillo JE (1993) Pathogenetic mechanisms of septic shock. Engl J Med 328:1471–1477

    CAS  Google Scholar 

  134. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    PubMed  CAS  Google Scholar 

  135. Ueda Y, Kondo M, Kelsoe G (2005) Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201:1771–1780

    PubMed  CAS  Google Scholar 

  136. Bentwich I, Avniel A, Karov Y et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    PubMed  CAS  Google Scholar 

  137. O’Neill LA (2008) “Fine tuning” TLR signaling. Nat Immunol 9:459–461

    PubMed  Google Scholar 

  138. Arron JR, Walsh MC, Choi Y (2002) TRAF-mediated TNFR-family signaling. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology, chapter 11, Unit 11, 19D

  139. Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873

    PubMed  CAS  Google Scholar 

  140. Sonkoly E, Wei T, Janson PC et al (2007) MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS ONE 2:e610

    PubMed  Google Scholar 

  141. Nakasa T, Miyaki S, Okubo A et al (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58:1284–1292

    PubMed  CAS  Google Scholar 

  142. Xiao C, Calado DP, Galler G et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159

    PubMed  CAS  Google Scholar 

  143. Garcia P, Frampton J (2008) Hematopoietic lineage commitment: miRNAs add specificity to a widely expressed transcription factor. Dev Cell 14:815–816

    PubMed  CAS  Google Scholar 

  144. Zhou B, Wang S, Mayr C et al (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104:7080–7085

    PubMed  CAS  Google Scholar 

  145. Williams BB, Wall M, Miao RY et al (2008) Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer Immunol Immunother 57:1635–1645

    PubMed  CAS  Google Scholar 

  146. Lu J, Guo S, Ebert BL et al (2008) MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 14:843–853

    PubMed  CAS  Google Scholar 

  147. Karasuyama H, Rolink A, Shinkai Y et al (1994) The expression of Vpre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77:133–143

    PubMed  CAS  Google Scholar 

  148. Pekarsky Y, Santanam U, Cimmino A et al (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66:11590–11593

    PubMed  CAS  Google Scholar 

  149. Chi H, Flavell RA (2008) Innate recognition of non-self nucleic acids. Genome Biol 9:211

    PubMed  Google Scholar 

  150. Calin GA, Cimmino A, Fabbri M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    PubMed  CAS  Google Scholar 

  151. Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    PubMed  CAS  Google Scholar 

  152. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    PubMed  CAS  Google Scholar 

  153. Linsley PS, Schelter J, Burchard J et al (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240–2252

    PubMed  CAS  Google Scholar 

  154. Asirvatham AJ, Gregorie CJ, Hu Z et al (2008) MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol 45:1995–2006

    PubMed  CAS  Google Scholar 

  155. Bazzini AA, Hopp HE, Beachy RN et al (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci USA 104:12157–12162

    PubMed  CAS  Google Scholar 

  156. Lecellier CH, Dunoyer P, Arar K et al (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    PubMed  CAS  Google Scholar 

  157. Lin J, Cullen BR (2007) Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 81:12218–12226

    PubMed  CAS  Google Scholar 

  158. Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922

    PubMed  CAS  Google Scholar 

  159. Jopling CL, Yi M, Lancaster AM et al (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581

    PubMed  CAS  Google Scholar 

  160. Scott GK, Mattie MD, Berger CE et al (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    PubMed  CAS  Google Scholar 

  161. Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    PubMed  CAS  Google Scholar 

  162. Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222

    PubMed  CAS  Google Scholar 

  163. Zhang L, Coukos G (2006) MicroRNAs: a new insight into cancer genome. Cell Cycle 5:2216–2219

    PubMed  CAS  Google Scholar 

  164. Zhang L, Huang J, Yang N et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141

    PubMed  CAS  Google Scholar 

  165. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    PubMed  CAS  Google Scholar 

  166. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    PubMed  CAS  Google Scholar 

  167. Osada H, Takahashi T (2007) MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 28:2–12

    PubMed  CAS  Google Scholar 

  168. Lee YS, Kim HK, Chung S et al (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280:16635–16641

    PubMed  CAS  Google Scholar 

  169. Esau CC, Monia BP (2007) Therapeutic potential for microRNAs. Adv Drug Deliv Rev 59:101–114

    PubMed  CAS  Google Scholar 

  170. Mattes J, Yang M, Foster PS (2007) Regulation of microRNA by antagomirs: a new class of pharmacological antagonists for the specific regulation of gene function? Am J Respir Cell Mol Biol 36:8–12

    PubMed  CAS  Google Scholar 

  171. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    PubMed  Google Scholar 

  172. Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243

    PubMed  Google Scholar 

  173. Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141

    PubMed  CAS  Google Scholar 

  174. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    PubMed  CAS  Google Scholar 

  175. Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50

    PubMed  CAS  Google Scholar 

  176. Hutvagner G, Simard MJ, Mello CC et al (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E98

    PubMed  Google Scholar 

  177. Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Yuqing Zhang and Dr. Hao Wang for their assistance in the literature search and critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyi Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, M., Marin-Muller, C., Bharadwaj, U. et al. MicroRNAs: Control and Loss of Control in Human Physiology and Disease. World J Surg 33, 667–684 (2009). https://doi.org/10.1007/s00268-008-9836-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-008-9836-x

Keywords

  • Pancreatic Cancer
  • miRNA Expression
  • miRNA Target
  • miRNA Gene
  • Chronic Lymphocytic Leukemia Patient