Skip to main content
Log in

CXCR2 and RET Single Nucleotide Polymorphisms in Pancreatic Cancer

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Enhanced angiogenesis and perineural invasion are markers of poor prognosis in patients with pancreatic cancer. Systemic therapies for pancreatic cancer have been largely ineffective, and thus improved, targeted therapies are needed. Single nucleotide polymorphisms (SNP) are DNA sequence variations that result in vast diversity of disease susceptibility and response to disease. CXCR2 is an important mediator of CXC chemokine-induced angiogenesis and is upregulated in pancreatic cancer. In a preclinical corneal micropocket assay, treatment of pancreatic cancer cell lines that express CXCR2 with anti-CXCR2 antibody inhibited angiogenesis. To date, there have not been any CXCR2 SNP associated with pancreatic cancer, but CXCR2 SNP has been postulated to be associated with angiogenesis in systemic sclerosis. The receptor tyrosine kinase encoded by the RET gene and its ligand glial derived neurotrophic factor (GDNF) are upregulated in pancreatic cancer. In vitro treatment of pancreatic cancer cell lines that express RET with anti-RET antibody or RET siRNA-inhibited GDNF-induced invasiveness. G691S RET SNP has been previously shown to be associated with enhanced pancreatic cancer invasiveness. We suggest that molecular profiling of each patient’s tumor for G691S RET SNP, potentially CXCR2 SNP, and also other yet-to-be identified SNP associated with pancreatic cancer will allow for both improved understanding of individual prognosis and allow for utilization of more personalized, targeted adjuvant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sachidanandam R, Weissman D, Schmidt SC et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  2. Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM (2007) Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res 67:9609–9612

    Article  PubMed  CAS  Google Scholar 

  3. Dong LM, Potter JD, White E et al (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299:2423–2436

    Article  PubMed  CAS  Google Scholar 

  4. Kuehn R, Lelkes PI, Bloechle C et al (1999) Angiogenesis, angiogenic growth factors, and cell adhesion molecules are upregulated in chronic pancreatic diseases: angiogenesis in chronic pancreatitis and in pancreatic cancer. Pancreas 18:96–103

    Article  PubMed  CAS  Google Scholar 

  5. Karademir S, Sokmen S, Terzi C et al (2000) Tumor angiogenesis as a prognostic predictor in pancreatic cancer. J Hepatobiliary Pancreat Surg 7:489–495

    Article  PubMed  CAS  Google Scholar 

  6. Fujioka S, Yoshida K, Yanagisawa S et al (2001) Angiogenesis in pancreatic carcinoma: thymidine phosphorylase expression in stromal cells and intratumoral microvessel density as independent predictors of overall and relapse-free survival. Cancer 92:1788–1797

    Article  PubMed  CAS  Google Scholar 

  7. Buchler P, Reber HA, Buchler MW et al (2002) VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg 236:738–749

    Article  PubMed  Google Scholar 

  8. Kindler HL, Friberg G, Singh DA et al (2005) Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23:8033–8040

    Article  PubMed  CAS  Google Scholar 

  9. Sunamura M, Duda DG, Ghattas MH et al (2003) Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6:15–24

    Article  PubMed  CAS  Google Scholar 

  10. Kasper HU, Ebert M, Malfertheiner P et al (2001) Expression of thrombospondin-1 in pancreatic carcinoma: correlation with microvessel density. Virchows Arch 438:116–120

    Article  PubMed  CAS  Google Scholar 

  11. Wente MN, Keane MP, Burdick MD et al (2006) Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 241:221–227

    Article  PubMed  CAS  Google Scholar 

  12. Strieter RM (2005) Masters of angiogenesis. Nat Med 11:925–927

    Article  PubMed  CAS  Google Scholar 

  13. Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64:993–998

    Article  PubMed  CAS  Google Scholar 

  14. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  PubMed  CAS  Google Scholar 

  15. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    Article  PubMed  CAS  Google Scholar 

  16. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    Article  PubMed  CAS  Google Scholar 

  17. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309

    Article  PubMed  CAS  Google Scholar 

  18. Richmond A (2002) Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2:664–674

    Article  PubMed  CAS  Google Scholar 

  19. Baggiolini M, Walz A, Kunkel SL (1998) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84:1045–1049

    Article  Google Scholar 

  20. Matsushima K, Oppenheim JJ (1998) Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF. Cytokine 1:2–13

    Article  Google Scholar 

  21. Miller MD, Krangel MS (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17–46

    PubMed  CAS  Google Scholar 

  22. Oppenheim JJ, Zachariae CO, Mukaida N, Matsushima K (1991) Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 9:617–648

    PubMed  CAS  Google Scholar 

  23. Farber JM (1993) HuMig: a new human member of the chemokine family of cytokines. Biochem Biophys Res Commun 192:223–230

    Article  PubMed  CAS  Google Scholar 

  24. Proost P, De Wolf-Peeters C, Conings R et al (1993) Identification of a novel granulocyte chemotactic protein (GCP-2) from human tumor cells. In vitro and in vivo comparison with natural forms of GRO, IP-10, and IL-8. J Immunol 150:1000–1010

    PubMed  CAS  Google Scholar 

  25. Walz A, Burgener R, Car B et al (1991) Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8. J Exp Med 174:1355–1362

    Article  PubMed  CAS  Google Scholar 

  26. Strieter RM, Polverini PJ, Kunkel SL et al (2001) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270:27348–27357

    Google Scholar 

  27. Arenberg DA, Kunkel SL, Polverini PJ et al (1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97:2792–2802

    Article  PubMed  CAS  Google Scholar 

  28. Arenberg DA, Keane MP, DiGiovine B et al (1998) Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J Clin Invest 102:465–472

    Article  PubMed  CAS  Google Scholar 

  29. Luan J, Shattuck-Brandt R, Haghnegahdar H et al (1997) Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol 62:588–597

    PubMed  CAS  Google Scholar 

  30. Arenberg DA, Kunkel SL, Polverini PJ et al (1996) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184:981–992

    Article  PubMed  CAS  Google Scholar 

  31. Addison CL, Arenberg DA, Morris SB et al (2000) The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum Gene Ther 11:247–261

    Article  PubMed  CAS  Google Scholar 

  32. Strieter RM, Kunkel SL, Arenberg DA et al (1995) Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 210:51–57

    Article  PubMed  CAS  Google Scholar 

  33. Addison CL, Daniel TO, Burdick MD et al (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR + CXC chemokine-induced angiogenic activity. J Immunol 165:5269–5277

    PubMed  CAS  Google Scholar 

  34. Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12:593–633

    Article  PubMed  CAS  Google Scholar 

  35. Le X, Shi Q, Wang B et al (2000) Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res 20:935–946

    Article  PubMed  CAS  Google Scholar 

  36. Shi Q, Abbruzzese JL, Huang S et al (1999) Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 5:3711–3721

    PubMed  CAS  Google Scholar 

  37. Shi Q, Le X, Abbruzzese JL et al (1999) Cooperation between transcription factor AP-1 and NF-kappaB in the induction of interleukin-8 in human pancreatic adenocarcinoma cells by hypoxia. J Interferon Cytokine Res 19:1363–1371

    Article  PubMed  CAS  Google Scholar 

  38. Gupta M, Song P, Yates CR, Meibohm B (2004) Real-time PCR-based genotyping assay for CXCR2 polymorphisms. Clin Chim Acta 341:93–100

    Article  PubMed  CAS  Google Scholar 

  39. Yang HP, Woodson K, Taylor PR et al (2006) Genetic variation in interleukin 8 and its receptor genes and its influence on the risk and prognosis of prostate cancer among Finnish men in a large cancer prevention trial. Eur J Cancer Prev 15:249–253

    Article  PubMed  CAS  Google Scholar 

  40. Renzoni E, Lympany P, Sestini P et al (2000) Distribution of novel polymorphisms of the interleukin-8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis. Arthritis Rheum 43:1633–1640

    Article  PubMed  CAS  Google Scholar 

  41. Viana AC, Kim YJ, Cirelli JA et al (2007) A novel PCR-RFLP assay for the detection of the single nucleotide polymorphism at position +1440 in the human CXCR2 gene. Biochem Genet 45:737–741

    Article  PubMed  CAS  Google Scholar 

  42. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  PubMed  CAS  Google Scholar 

  43. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  PubMed  CAS  Google Scholar 

  44. Ketterer K, Rao S, Friess H et al (2003) Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer. Clin Cancer Res 9:5127–5136

    PubMed  CAS  Google Scholar 

  45. Sakamoto Y, Kitajima Y, Edakuni G et al (2001) Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep 8:477–484

    PubMed  CAS  Google Scholar 

  46. Sawai H, Okada Y, Kazanjian K et al (2005) The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 65:11536–11544

    Article  PubMed  CAS  Google Scholar 

  47. Ito Y, Okada Y, Sato M et al (2005) Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138:788–794

    Article  PubMed  Google Scholar 

  48. Kodama Y, Asai N, Kawai K et al (2005) The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 96:143–148

    Article  PubMed  CAS  Google Scholar 

  49. Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42:581–588

    Article  PubMed  CAS  Google Scholar 

  50. Eng C (1999) RET proto-oncogene in the development of human cancer. J Clin Oncol 17:380–393

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Joe Hines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donahue, T.R., Hines, O.J. CXCR2 and RET Single Nucleotide Polymorphisms in Pancreatic Cancer. World J Surg 33, 710–715 (2009). https://doi.org/10.1007/s00268-008-9826-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-008-9826-z

Keywords

Navigation