Skip to main content

Advertisement

Log in

Do Benign Thyroid Nodules Have Malignant Potential? An Evidence-Based Review

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Benign thyroid tumors account for most nodular thyroid disease. Determination of whether a thyroid nodule is benign or malignant is a major clinical dilemma and underlies the decision to proceed to surgery in many patients. Although the accuracy of thyroid nodule fine-needle aspiration (FNA) has reduced the need for surgery over the years, questions regarding how to follow FNA-designated benign nodules remain unresolved. This is true at least in part because of uncertainty over whether some benign nodules harbor malignant potential.

Methods

An evidence-based review of recent clinical, pathologic, and molecular data is presented. A summary of data and observations from our own experience is also provided.

Results

Review of our recent 10-year experience indicates that 2% of thyroid malignancies arise within a preexisting benign thyroid nodule. In addition, both cytologic and molecular tumor markers, including Gal-3, CITED1, HBME-1, Ras, RET/PTC, and PAX8/PPARγ, have been identified in some histopathologically classified benign nodules. Gene expression profiling suggests that follicular adenomas and Hürthle cell adenomas have similarities to both benign and malignant tumors, suggesting that some of these tumors are premalignant. In addition, 10% of surgically excised follicular tumors are encapsulated follicular lesions with nuclear atypia, which have been termed “well-differentiated tumors of uncertain malignant potential.” The data available suggest that these tumors could be precursors to carcinoma.

Conclusion

Some benign thyroid nodules have malignant potential. Further molecular testing of these tumors can shed light on the pathogenesis of early malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mazzaferri EL (1981) Solitary thyroid nodule. 2. Selective approach to management. Postgrad Med 70:107–109, 112, 116

    PubMed  CAS  Google Scholar 

  2. Mortensen JD, Woolner LB, Bennett WA (1955) Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab 15:1270–1280

    PubMed  CAS  Google Scholar 

  3. Lang W, Borrusch H, Bauer L (1988) Occult carcinomas of the thyroid: evaluation of 1,020 sequential autopsies. Am J Clin Pathol 90:72–76

    PubMed  CAS  Google Scholar 

  4. Rosai J, Carcangiu ML, DeLellis RA (1992) Atlas of Tumor Pathology. 3rd edition. Vol 5. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  5. Sackett DL (1989) Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 95:2S–4S

    Article  PubMed  CAS  Google Scholar 

  6. Barden CB, Shister KW, Zhu B, et al (2003) Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res 9:1792–1800

    PubMed  CAS  Google Scholar 

  7. Finley DJ, Arora N, Zhu B, et al (2004) Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J Clin Endocrinol Metab 89:3214–3223

    Article  PubMed  CAS  Google Scholar 

  8. Nikiforova MN, Kimura ET, Gandhi M, et al (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399–5404

    Article  PubMed  CAS  Google Scholar 

  9. Alexander EK, Hurwitz S, Heering JP, et al (2003) Natural history of benign solid and cystic thyroid nodules. Ann Intern Med 138:315–318

    PubMed  Google Scholar 

  10. Kuma K, Matsuzuka F, Yokozawa T, et al (1994) Fate of untreated benign thyroid nodules: results of long-term follow-up. World J Surg 18:495–498

    Article  PubMed  CAS  Google Scholar 

  11. Evans HL, Vassilopoulou-Sellin R (1998) Follicular and Hurthle cell carcinomas of the thyroid: a comparative study. Am J Surg Pathol 22:1512–1520

    Article  PubMed  CAS  Google Scholar 

  12. Park SH, Suh EH, Chi JG (1988) A histopathologic study on 1,095 surgically resected thyroid specimens. Jpn J Clin Oncol 18:297–302

    PubMed  CAS  Google Scholar 

  13. Pennelli N, Pennelli G, Merante Boschin I, et al (2005) Thyroid intrafollicular neoplasia (TIN) as a precursor of papillary microcarcinoma. Ann Ital Chir 76:219–224

    PubMed  Google Scholar 

  14. Hazard JB, Kenyon R (1954) Atypical adenoma of the thyroid. AMA Arch Pathol 58:554–563

    PubMed  CAS  Google Scholar 

  15. Vickery AL Jr (1983) Thyroid papillary carcinoma: pathological and philosophical controversies. Am J Surg Pathol 7:797–807

    Article  PubMed  Google Scholar 

  16. Chan JK (2002) Strict criteria should be applied in the diagnosis of encapsulated follicular variant of papillary thyroid carcinoma. Am J Clin Pathol 117:16–18

    Article  PubMed  Google Scholar 

  17. Franc B, de la Salmoniere P, Lange F, et al (2003) Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Hum Pathol 34:1092–1100

    Article  PubMed  Google Scholar 

  18. Lloyd RV, Erickson LA, Casey MB, et al (2004) Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28:1336–1340

    Article  PubMed  Google Scholar 

  19. Saxen E, Franssila K, Bjarnason O, et al (1978) Observer variation in histologic classification of thyroid cancer. Acta Pathol Microbiol Scand [A] 86A:483–486

    CAS  Google Scholar 

  20. Hirokawa M, Carney JA, Goellner JR, et al (2002) Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol 26:1508–1514

    Article  PubMed  Google Scholar 

  21. Williams ED (2000) Guest editorial: two proposals regarding the terminology of thyroid tumors. Int J Surg Pathol 8:181–183

    Article  PubMed  Google Scholar 

  22. Mai KT, Landry DC, Thomas J, et al (2001) Follicular adenoma with papillary architecture: a lesion mimicking papillary thyroid carcinoma. Histopathology 39:25–32

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Singh B, Tallini G, et al (2006) Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer 107:1255–1264

    Article  PubMed  Google Scholar 

  24. Bartolazzi A, Gasbarri A, Papotti M, et al (2001) Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet 357:1644–1650

    Article  PubMed  CAS  Google Scholar 

  25. Prasad ML, Pellegata NS, Huang Y, et al (2005) Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 18:48–57

    Article  PubMed  CAS  Google Scholar 

  26. Scognamiglio T, Hyjek E, Kao J, et al (2006) Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol 126:700–708

    Article  PubMed  CAS  Google Scholar 

  27. Park YJ, Kwak SH, Kim DC, et al (2007) Diagnostic value of galectin-3, HBME-1, cytokeratin 19, high molecular weight cytokeratin, cyclin D1 and p27(kip1) in the differential diagnosis of thyroid nodules. J Korean Med Sci 22:621–628

    PubMed  Google Scholar 

  28. Beesley MF, McLaren KM (2002) Cytokeratin 19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nodules. Histopathology 41:236–243

    Article  PubMed  CAS  Google Scholar 

  29. de Matos PS, Ferreira AP, de Oliveira Facuri F, et al (2005) Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology 47:391–401

    Article  PubMed  Google Scholar 

  30. Cheung CC, Ezzat S, Freeman JL, et al (2001) Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14:338–342

    Article  PubMed  CAS  Google Scholar 

  31. Erkilic S, Aydin A, Kocer NE (2002) Diagnostic utility of cytokeratin 19 expression in multinodular goiter with papillary areas and papillary carcinoma of thyroid. Endocr Pathol 13:207–211

    Article  PubMed  CAS  Google Scholar 

  32. Lam KY, Lui MC, Lo CY (2001) Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol 27:631–635

    Article  PubMed  CAS  Google Scholar 

  33. Nasr MR, Mukhopadhyay S, Zhang S, et al (2006) Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: utility of HBME1 combined with CK19 immunostaining. Mod Pathol 19:1631–1637

    Article  PubMed  CAS  Google Scholar 

  34. Sahoo S, Hoda SA, Rosai J, et al (2001) Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol 116:696–702

    Article  PubMed  CAS  Google Scholar 

  35. Aron M, Kapila K, Verma K (2006) Utility of galectin 3 expression in thyroid aspirates as a diagnostic marker in differentiating benign from malignant thyroid neoplasms. Indian J Pathol Microbiol 49:376–380

    PubMed  Google Scholar 

  36. Mehrotra P, Okpokam A, Bouhaidar R, et al (2004) Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology 45:493–500

    Article  PubMed  CAS  Google Scholar 

  37. Papotti M, Rodriguez J, De Pompa R, et al (2005) Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 18:541–546

    Article  PubMed  CAS  Google Scholar 

  38. Fukushima T, Suzuki S, Mashiko M, et al (2003) BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22:6455–6457

    Article  PubMed  CAS  Google Scholar 

  39. Kimura ET, Nikiforova MN, Zhu Z, et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    PubMed  CAS  Google Scholar 

  40. Xu X, Quiros RM, Gattuso P, et al (2003) High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63:4561–4567

    PubMed  CAS  Google Scholar 

  41. Kebebew E, Weng J, Bauer J, et al (2007) The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 246:466–470

    Article  PubMed  Google Scholar 

  42. Lee JH, Lee ES, Kim YS (2007) Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer 110:38–46

    Article  PubMed  Google Scholar 

  43. Ishizaka Y, Kobayashi S, Ushijima T, et al (1991) Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 6:1667–1672

    PubMed  CAS  Google Scholar 

  44. Chua EL, Wu WM, Tran KT, et al (2000) Prevalence and distribution of ret/ptc 1, 2, and 3 in papillary thyroid carcinoma in New Caledonia and Australia. J Clin Endocrinol Metab 85:2733–2739

    Article  PubMed  CAS  Google Scholar 

  45. Learoyd DL, Messina M, Zedenius J, et al (1998) RET/PTC and RET tyrosine kinase expression in adult papillary thyroid carcinomas. J Clin Endocrinol Metab 83:3631–3635

    Article  PubMed  CAS  Google Scholar 

  46. Santoro M, Papotti M, Chiappetta G, et al (2002) RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab 87:370–379

    Article  PubMed  CAS  Google Scholar 

  47. Tallini G, Santoro M, Helie M, et al (1998) RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4:287–294

    PubMed  CAS  Google Scholar 

  48. Capella G, Matias-Guiu X, Ampudia X, et al (1996) Ras oncogene mutations in thyroid tumors: polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagn Mol Pathol 5:45–52

    Article  PubMed  CAS  Google Scholar 

  49. Garcia-Rostan G, Zhao H, Camp RL, et al (2003) Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21:3226–3235

    Article  PubMed  CAS  Google Scholar 

  50. Karga H, Lee JK, Vickery AL Jr, et al (1991) Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab 73:832–836

    Article  PubMed  CAS  Google Scholar 

  51. Lemoine NR, Mayall ES, Wyllie FS, et al (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159–164

    PubMed  CAS  Google Scholar 

  52. Liu RT, Hou CY, You HL, et al (2004) Selective occurrence of ras mutations in benign and malignant thyroid follicular neoplasms in Taiwan. Thyroid 14:616–621

    Article  PubMed  CAS  Google Scholar 

  53. Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479

    PubMed  CAS  Google Scholar 

  54. Vasko V, Ferrand M, Di Cristofaro J, et al (2003) Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 88:2745–2752

    Article  PubMed  CAS  Google Scholar 

  55. Kroll TG, Sarraf P, Pecciarini L, et al (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289:1357–1360

    Article  PubMed  CAS  Google Scholar 

  56. Dwight T, Thoppe SR, Foukakis T, et al (2003) Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88:4440–4445

    Article  PubMed  CAS  Google Scholar 

  57. Lacroix L, Lazar V, Michiels S, et al (2005) Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic genetic alterations. Am J Pathol 167:223–231

    PubMed  CAS  Google Scholar 

  58. Marques AR, Espadinha C, Catarino AL, et al (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87:3947–3952

    Article  PubMed  CAS  Google Scholar 

  59. Nikiforova MN, Biddinger PW, Caudill CM, et al (2002) PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26:1016–1023

    Article  PubMed  Google Scholar 

  60. Castro P, Rebocho AP, Soares RJ, et al (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91:213–220

    Article  PubMed  CAS  Google Scholar 

  61. Elisei R, Romei C, Vorontsova T, et al (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86:3211–3216

    Article  PubMed  CAS  Google Scholar 

  62. Cerilli LA, Mills SE, Rumpel CA, et al (2002) Interpretation of RET immunostaining in follicular lesions of the thyroid. Am J Clin Pathol 118:186–193

    Article  PubMed  Google Scholar 

  63. Fusco A, Chiappetta G, Hui P, et al (2002) Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol 160:2157–2167

    PubMed  CAS  Google Scholar 

  64. Oyama T, Suzuki T, Hara F, et al (1995) N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol Int 45:45–50

    PubMed  CAS  Google Scholar 

  65. Esapa CT, Johnson SJ, Kendall-Taylor P, et al (1999) Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 50:529–535

    Article  CAS  Google Scholar 

  66. Nikiforova MN, Lynch RA, Biddinger PW, et al (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326

    Article  PubMed  CAS  Google Scholar 

  67. Cheung L, Messina M, Gill A, et al (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88:354–357

    Article  PubMed  CAS  Google Scholar 

  68. Huang Y, Prasad M, Lemon WJ, et al (2001) Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 98:15044–15049

    Article  PubMed  CAS  Google Scholar 

  69. Lubitz CC, Gallagher LA, Finley DJ, et al (2005) Molecular analysis of minimally invasive follicular carcinomas by gene profiling. Surgery 138:1042–1048

    Article  PubMed  Google Scholar 

  70. Lubitz CC, Ugras SK, Kazam JJ, et al (2006) Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J Mol Diagn 8:490–498

    Article  PubMed  CAS  Google Scholar 

  71. Studer H, Derwahl M (1995) Mechanisms of nonneoplastic endocrine hyperplasia-a changing concept: a review focused on the thyroid gland. Endocr Rev 16:411–426

    Article  PubMed  CAS  Google Scholar 

  72. Cerci C, Cerci SS, Eroglu E, et al (2007) Thyroid cancer in toxic and non-toxic multinodular goiter. J Postgrad Med 53:157–160

    PubMed  CAS  Google Scholar 

  73. Santoro M, Carlomagno F, Hay ID, et al (1992) Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517–1522

    Article  PubMed  CAS  Google Scholar 

  74. Finley DJ, Zhu B, Barden CB, et al (2004) Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg 240:425–436

    Article  PubMed  Google Scholar 

  75. Finley DJ, Lubitz CC, Wei C, et al (2005) Advancing the molecular diagnosis of thyroid nodules: defining benign lesions by molecular profiling. Thyroid 15:562–568

    Article  PubMed  CAS  Google Scholar 

  76. McHenry CR, Sandoval BA (1998) Management of follicular and Hurthle cell neoplasms of the thyroid gland. Surg Oncol Clin N Am 7:893–910

    PubMed  CAS  Google Scholar 

  77. Pisani T, Pantellini F, Centanni M, et al (2003) Immunocytochemical expression of Ki67 and laminin in Hurthle cell adenomas and carcinomas. Anticancer Res 23:3323–3326

    PubMed  CAS  Google Scholar 

  78. Chen H, Nicol TL, Zeiger MA, et al (1998) Hurthle cell neoplasms of the thyroid: are there factors predictive of malignancy? Ann Surg 227:542–546

    Article  PubMed  CAS  Google Scholar 

  79. Lopez-Penabad L, Chiu AC, Hoff AO, et al (2003) Prognostic factors in patients with Hurthle cell neoplasms of the thyroid. Cancer 97:1186–1194

    Article  PubMed  Google Scholar 

  80. Nascimento MC, Bisi H, Alves VA, et al (2001) Differential reactivity for galectin-3 in Hurthle cell adenomas and carcinomas. Endocr Pathol 12:275–279

    Article  PubMed  CAS  Google Scholar 

  81. Cheung CC, Ezzat S, Ramyar L, et al (2000) Molecular basis of Hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85:878–882

    Article  PubMed  CAS  Google Scholar 

  82. Galusca B, Dumollard JM, Chambonniere ML, et al (2004) Peroxisome proliferator activated receptor gamma immunohistochemical expression in human papillary thyroid carcinoma tissues: possible relationship to lymph node metastasis. Anticancer Res 24:1993–1997

    PubMed  CAS  Google Scholar 

  83. Musholt PB, Imkamp F, von Wasielewski R, et al (2003) RET rearrangements in archival oxyphilic thyroid tumors: new insights in tumorigenesis and classification of Hurthle cell carcinomas? Surgery 134:881–889

    Article  PubMed  Google Scholar 

  84. Finley DJ, Zhu B, Fahey TJ 3rd (2004) Molecular analysis of Hurthle cell neoplasms by gene profiling. Surgery 136:1160–1168

    Article  PubMed  Google Scholar 

  85. Ashcraft MW, Van Herle AJ (1981) Management of thyroid nodules. I. History and physical examination, blood tests, x-ray tests, and ultrasonography. Head Neck Surg 3:216–230

    Article  PubMed  CAS  Google Scholar 

  86. de los Santos ET, Keyhani-Rofagha S, Cunningham JJ, et al (1990) Cystic thyroid nodules: the dilemma of malignant lesions. Arch Intern Med 150:1422–1427

    Article  Google Scholar 

  87. Lin JD, Hsuen C, Chen JY, et al (2007) Cystic change in thyroid cancer. ANZ J Surg 77:450–454

    Article  PubMed  Google Scholar 

  88. Rehak NN, Oertel YC, Herp A, et al (1993) Biochemical analysis of thyroid cyst fluid obtained by fine-needle aspiration. Arch Pathol Lab Med 117:625–630

    PubMed  CAS  Google Scholar 

  89. Gasbarri A, Sciacchitano S, Marasco A, et al (2004) Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto’s thyroiditis. Br J Cancer 91:1096–1104

    PubMed  CAS  Google Scholar 

  90. Okayasu I, Fujiwara M, Hara Y, et al (1995) Association of chronic lymphocytic thyroiditis and thyroid papillary carcinoma: a study of surgical cases among Japanese, and white and African Americans. Cancer 76:2312–2318

    Article  PubMed  CAS  Google Scholar 

  91. Rhoden KJ, Unger K, Salvatore G, et al (2006) RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 91:2414–2423

    Article  PubMed  CAS  Google Scholar 

  92. Sargent R, LiVolsi V, Murphy J, et al (2006) BRAF mutation is unusual in chronic lymphocytic thyroiditis-associated papillary thyroid carcinomas and absent in non-neoplastic nuclear atypia of thyroiditis. Endocr Pathol 17:235–241

    Article  PubMed  CAS  Google Scholar 

  93. Sheils OM, O’Eary J J, Uhlmann V, et al (2000) ret/PTC-1 Activation in Hashimoto thyroiditis. Int J Surg Pathol 8:185–189

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Dancer’s Care Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Fahey III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, N., Scognamiglio, T., Zhu, B. et al. Do Benign Thyroid Nodules Have Malignant Potential? An Evidence-Based Review. World J Surg 32, 1237–1246 (2008). https://doi.org/10.1007/s00268-008-9484-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-008-9484-1

Keywords

Navigation