Skip to main content

Development of Small-Diameter Vascular Grafts

Abstract

Introduction

Cardiovascular disease, including coronary artery and peripheral vascular pathologies, is the leading cause of mortality in the United States and Western countries. There is a pressing need to develop small-diameter vascular vessels for bypass surgery and other vascular reconstructive procedures. Tissue engineering offers the prospect of being able to meet the demand for replacement of diseased vessels. Significant advances have been made in recent studies and provide confidence that success is attainable. For instance, a completely cellular approach culturing cells into tissue sheets and wrapping these layers was able to form a layered cellular vascular graft with impressive strength.

Methods/Results

In our experiments, decellularization and heparin immobilization grafts from porcine tissues implanted in a canine model could be repopulated from the host cells, indicating the grafts’ potential to develop into living tissues that can adapt and respond to changes in the body.

Conclusions

This review summarizes the current status of vascular grafts used clinically, updates the most recent developments on vascular tissue engineering, and discusses the challenges for the future.

This is a preview of subscription content, access via your institution.

Figure 1.

References

  1. Tu JV, Pashos CL, Naylor CD, et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N Engl J Med 1997;336:1500–1505

    Article  PubMed  CAS  Google Scholar 

  2. McKee JA, Banik SS, Boyer MJ, et al. Human arteries engineered in vitro. EMBO Rep 2003;4:633–638

    Article  PubMed  CAS  Google Scholar 

  3. Veith FJ, Moss CM, Sprayregen S, et al. Preoperative saphenous venography in arterial reconstructive surgery of the lower extremity. Surgery 1979;85:253–256

    PubMed  CAS  Google Scholar 

  4. Edwards WS, Holdefer WF, Mohtashemi M. The importance of proper caliber of lumen in femoral-popliteal artery reconstruction. Surg Gynecol Obstet 1966;122:37–40

    PubMed  CAS  Google Scholar 

  5. Kannan RY, Salacinski HJ, Butler PE, et al. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 2005;74:570–581

    PubMed  Google Scholar 

  6. Salacinski HJ, Goldner S, Giudiceandrea A, et al. The mechanical behavior of vascular grafts: a review. J Biomater Appl 2001;15:241–278

    Article  PubMed  CAS  Google Scholar 

  7. Kakisis JD, Liapis CD, Breuer C, et al. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg 2005;41:349–354

    Article  PubMed  Google Scholar 

  8. Hoenig MR, Campbell GR, Rolfe BE, et al. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler Thromb Vasc Biol 2005;25:1128–1134

    Article  PubMed  CAS  Google Scholar 

  9. Klinkert P, Post PN, Breslau PJ, et al. Saphenous vein versus PTFE for above-knee femoropopliteal bypass: a review of the literature. Eur J Vasc Endovasc Surg 2004;27:357–362

    Article  PubMed  CAS  Google Scholar 

  10. Tiwari A, Cheng KS, Salacinski H, et al. Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur J Vasc Endovasc Surg 2003;25:287–295

    Article  PubMed  CAS  Google Scholar 

  11. Rashid ST, Salacinski HJ, Hamilton G, et al. The use of animal models in developing the discipline of cardiovascular tissue engineering: a review. Biomaterials 2004;25:1627–1637

    Article  PubMed  CAS  Google Scholar 

  12. Abbott WM, Callow A, Moore W, et al. Evaluation and performance standards for arterial prostheses. J Vasc Surg 1993;17:746–756

    Article  PubMed  CAS  Google Scholar 

  13. Ratcliffe A. Tissue engineering of vascular grafts. Matrix Biol 2000;19:353–357

    Article  PubMed  CAS  Google Scholar 

  14. Mansbridge J, Liu K, Patch R, et al. Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeutic range. Tissue Eng 1998;4:403–414

    Article  PubMed  CAS  Google Scholar 

  15. Noordenbos J, Dore C, Hansbrough JF. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil 1999;20:275–81

    Article  PubMed  CAS  Google Scholar 

  16. Kunlin J. Le traitement de l’arterite obliterante par la greffe veineuse. Arch Mal Coeur 1949;42:371–373

    Google Scholar 

  17. Lytle BW. Prolonging patency—choosing coronary bypass grafts. N Engl J Med 2004;351:2262–2264

    Article  PubMed  CAS  Google Scholar 

  18. Taylor LM Jr, Edwards JM, Porter JM. Present status of reversed vein bypass grafting: five-year results of a modern series. J Vasc Surg 1990;11:193–205; discussion 205–206

    Article  PubMed  Google Scholar 

  19. Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J Vasc Surg 2003;37:472–480

    Article  PubMed  Google Scholar 

  20. Kidane AG, Salacinski H, Tiwari A, et al. Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules 2004;5:798–813

    Article  PubMed  CAS  Google Scholar 

  21. Collins TC, Souchek J, Beyth RJ. Benefits of antithrombotic therapy after infrainguinal bypass grafting: a meta-analysis. Am J Med 2004;117:93–99

    Article  PubMed  CAS  Google Scholar 

  22. Begovac PC, Thomson RC, Fisher JL, et al. Improvements in Gore-Tex vascular graft performance by Carmeda BioActive surface heparin immobilization. Eur J Vasc Endovasc Surg 2003;25:432–437

    Article  PubMed  CAS  Google Scholar 

  23. Aldenhoff YB, van Der Veen FH, ter Woorst J, et al. Performance of a polyurethane vascular prosthesis carrying a dipyridamole (Persantin) coating on its lumenal surface. J Biomed Mater Res 2001;54:224–233

    Article  PubMed  CAS  Google Scholar 

  24. Phaneuf MD, Szycher M, Berceli SA, et al. Covalent linkage of recombinant hirudin to a novel ionic poly(carbonate) urethane polymer with protein binding sites: determination of surface antithrombin activity. Artif Organs 1998;22:657–665

    Article  PubMed  CAS  Google Scholar 

  25. Sun LB, Utoh J, Moriyama S, et al. Pretreatment of a Dacron graft with tissue factor pathway inhibitor decreases thrombogenicity and neointimal thickness: a preliminary animal study. ASAIO J 2001;47:325–328

    Article  PubMed  CAS  Google Scholar 

  26. Herring M, Gardner A, Glover J. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 1978;84:498–504

    PubMed  CAS  Google Scholar 

  27. Herring M, Gardner A, Glover J. Seeding endothelium onto canine arterial prostheses: the effects of graft design. Arch Surg 1979;114:679–682

    PubMed  CAS  Google Scholar 

  28. Herring MB, Dilley R, Jersild RA, et al. Seeding arterial prostheses with vascular endothelium: the nature of the lining. Ann Surg 1979;190:84–90

    Article  PubMed  CAS  Google Scholar 

  29. Rashid ST, Salacinski HJ, Fuller BJ, et al. Engineering of bypass conduits to improve patency. Cell Prolif 2004;37:351–366

    Article  PubMed  Google Scholar 

  30. Walluscheck KP, Steinhoff G, Kelm S, et al. Improved endothelial cell attachment on ePTFE vascular grafts pretreated with synthetic RGD-containing peptides. Eur J Vasc Endovasc Surg 1996;12:321–330

    Article  PubMed  CAS  Google Scholar 

  31. Budd JS, Bell PR, James RF. Attachment of indium-111 labelled endothelial cells to pretreated polytetrafluoroethylene vascular grafts. Br J Surg 1989;76:1259–1261

    Article  PubMed  CAS  Google Scholar 

  32. Gosselin C, Vorp DA, Warty V, et al. ePTFE coating with fibrin glue, FGF-1, and heparin: effect on retention of seeded endothelial cells. J Surg Res 1996;60:327–332

    Article  PubMed  CAS  Google Scholar 

  33. Anderson JS, Price TM, Hanson SR, et al. In vitro endothelialization of small-caliber vascular grafts. Surgery 1987;101:577–586

    PubMed  CAS  Google Scholar 

  34. Seifalian AM, Tiwari A, Hamilton G, et al. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 2002;26:307–320

    Article  PubMed  Google Scholar 

  35. Kiyama H, Imazeki T, Kurihara S, et al. Long-term follow-up of polyurethane vascular grafts for hemoaccess bridge fistulas. Ann Vasc Surg 2003;17:516–521

    Article  PubMed  Google Scholar 

  36. Jun HW, Taite LJ, West JL. Nitric oxide-producing polyurethanes. Biomacromolecules 2005;6:838–844

    Article  PubMed  CAS  Google Scholar 

  37. Fleser PS, Nuthakki VK, Malinzak LE, et al. Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg 2004;40:803–811

    Article  PubMed  Google Scholar 

  38. Tamura N, Nakamura T, Terai H, et al. A new acellular vascular prosthesis as a scaffold for host tissue regeneration. Int J Artif Organs 2003;26:783–792

    PubMed  CAS  Google Scholar 

  39. Field PL. The chemically treated bovine ureter—clinical performance of a novel biological vascular prosthesis. Cardiovasc Surg 2003;11:30–34

    Article  PubMed  CAS  Google Scholar 

  40. Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol 1999;10:123–129

    Article  PubMed  CAS  Google Scholar 

  41. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998;16:224–230

    Article  PubMed  CAS  Google Scholar 

  42. Conklin BS, Richter ER, Kreutziger KL, et al. Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys 2002;24:173–183

    Article  PubMed  CAS  Google Scholar 

  43. Nemcova S, Noel AA, Jost CJ, et al. Evaluation of a xenogeneic acellular collagen matrix as a small-diameter vascular graft in dogs—preliminary observations. J Invest Surg 2001;14:321–330

    Article  PubMed  CAS  Google Scholar 

  44. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986;231:397–400

    Article  PubMed  Google Scholar 

  45. He H, Shirota T, Yasui H, et al. Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential. J Thorac Cardiovasc Surg 2003;126:455–464

    Article  PubMed  Google Scholar 

  46. Sparks SR, Tripathy U, Broudy A, et al. Small-caliber mesothelial cell-layered polytetraflouroethylene vascular grafts in New Zealand white rabbits. Ann Vasc Surg 2002;16:73–76

    Article  PubMed  Google Scholar 

  47. Matsumura G, Hibino N, Ikada Y, et al. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003;24:2303–2308

    Article  PubMed  CAS  Google Scholar 

  48. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro. Science 1999;284:489–493

    Article  PubMed  CAS  Google Scholar 

  49. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003;24:4385–4415

    Article  PubMed  CAS  Google Scholar 

  50. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–4364

    Article  PubMed  CAS  Google Scholar 

  51. Sagnella SM, Kligman F, Anderson EH, et al. Human microvascular endothelial cell growth and migration on biomimetic surfactant polymers. Biomaterials 2004;25:1249–1259

    Article  PubMed  CAS  Google Scholar 

  52. Sagnella S, Kligman F, Marchant RE, et al. Biometric surfactant polymers designed for shear-stable endothelialization on biomaterials. J Biomed Mater Res A 2003;67:689–701

    Article  PubMed  Google Scholar 

  53. Hirai J, Matsuda T. Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system. Cell Transplant 1995;4:597–608

    Article  PubMed  Google Scholar 

  54. L’Heureux N, Paquet S, Labbe R, et al. A completely biological tissue-engineered human blood vessel. FASEB J 1998;12:47–56

    PubMed  CAS  Google Scholar 

  55. L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006;12:361–365

    Article  PubMed  CAS  Google Scholar 

  56. Chue WL, Campbell GR, Caplice N, et al. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg 2004;39:859–867

    Article  PubMed  Google Scholar 

  57. Shirota T, He H, Yasui H, et al. Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 2003;9:127–136

    Article  PubMed  CAS  Google Scholar 

  58. Cho SW, Lim SH, Kim IK, et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg 2005;241:506–515

    Article  PubMed  Google Scholar 

  59. Simper D, Stalboerger PG, Panetta CJ, et al. Smooth muscle progenitor cells in human blood. Circulation 2002;106:1199–1204

    Article  PubMed  CAS  Google Scholar 

  60. Robb BW, Wachi H, Schaub T, et al. Characterization of an in vitro model of elastic fiber assembly. Mol Biol Cell 1999;10:3595–3605

    PubMed  Google Scholar 

  61. Kreuter J. Nanoparticles. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology, Vol 9. New York, Marcel Dekker, 1994;165–190

    Google Scholar 

  62. Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3–5

    PubMed  CAS  Google Scholar 

  63. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311–330

    Article  PubMed  CAS  Google Scholar 

  64. Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharmacol 2004;1:211–219

    Article  CAS  Google Scholar 

  65. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631–651

    Article  PubMed  CAS  Google Scholar 

  66. Rome JJ, Shayani V, Flugelman MY, et al. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall: modeling with microscopic tracer particles and verification with a recombinant adenoviral vector. Arterioscler Thromb 1994;14:148–161

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by research grants from the NIH (HL076345 to P.L.; DE15543 and AT003094 to Q.Y.; HL65916, HL72716, EB-002436, and HL083471 to C.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyi Chen MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Lin, P., Yao, Q. et al. Development of Small-Diameter Vascular Grafts. World J. Surg. 31, 682–689 (2007). https://doi.org/10.1007/s00268-006-0731-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-006-0731-z

Keywords

  • Tissue Engineering
  • Saphenous Vein
  • Patency Rate
  • Intimal Hyperplasia
  • Vascular Graft