Skip to main content

Hyperbaric Oxygen Therapy for Malignancy: A Review

Abstract

One unique feature of tumors is the presence of hypoxic regions, which occur predominantly at the tumor center. Hypoxia has a major impact on various aspects of tumor cell function and proliferation. Hypoxic tumor cells are relatively insensitive to conventional therapy owing to cellular adaptations effected by the hypoxic microenvironment. Recent efforts have aimed to alter the hypoxic state and to reverse these adaptations to improve treatment outcome. One way to increase tumor oxygen tensions is by hyperbaric oxygen (HBO) therapy. HBO therapy can influence the tumor microenvironment at several levels. It can alter tumor hypoxia, a potent stimulus that drives angiogenesis. Hyperoxia as a result of HBO also produces reactive oxygen species, which can damage tumors by inducing excessive oxidative stress. This review outlines the importance of oxygen to tumors and the mechanisms by which tumors survive under hypoxic conditions. It also presents data from both experimental and clinical studies for the effect of HBO on malignancy.

This is a preview of subscription content, access via your institution.

Figure 1.

References

  1. Vaupel P, et al. Blood flow, oxygen consumption and tissue oxygenation of human tumors. Adv Exp Med Biol 1990;277:895–905

    PubMed  CAS  Google Scholar 

  2. Tandara AA, et al. Oxygen in wound healing—more than a nutrient. World J Surg 2004;28:294–300

    PubMed  Google Scholar 

  3. Grolman RE, et al. Transcutaneous oxygen measurements predict a beneficial response to hyperbaric oxygen therapy in patients with nonhealing wounds and critical limb ischemia. Am Surg 2001;67:1072–1080

    PubMed  CAS  Google Scholar 

  4. Hammarlund C, et al. Hyperbaric oxygen treatment of healthy volunteers with U.V.-irradiated blister wounds. Burns 1991;17:296–301

    PubMed  CAS  Google Scholar 

  5. Thom SR, et al. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 1995;25:474–480

    PubMed  CAS  Google Scholar 

  6. Weaver LK, et al. Hyperbaric oxygen for acute carbon monoxide poisoning.N Engl J Med 2002;347:1057–1067

    PubMed  CAS  Google Scholar 

  7. Dean BS, et al. Coma reversal with cerebral dysfunction recovery after repetitive hyperbaric oxygen therapy for severe carbon monoxide poisoning. Am J Emerg Med 1993;11:616–618

    PubMed  CAS  Google Scholar 

  8. Hawkins M, et al. Severe carbon monoxide poisoning: outcome after hyperbaric oxygen therapy. Br J Anaesth 2000;84:584–586

    PubMed  CAS  Google Scholar 

  9. Durmaz E, et al. Carbon monoxide poisoning and hyperbaric oxygen therapy. Br J Nurs 1999;8:1067–1072

    PubMed  CAS  Google Scholar 

  10. Wilkinson D, et al. Hyperbaric oxygen treatment and survival from necrotizing soft tissue infection. Arch Surg 2004;139:1339–1345

    PubMed  Google Scholar 

  11. Henk JM, et al. Radiotherapy and hyperbaric oxygen in head and neck cancer: final report of first controlled clinical trial. Lancet 1977;2:101–103

    PubMed  CAS  Google Scholar 

  12. Petre PM, et al. Hyperbaric oxygen as a chemotherapy adjuvant in the treatment of metastatic lung tumors in a rat model. J Thorac Cardiovasc Surg 2003;125:85–95

    PubMed  CAS  Google Scholar 

  13. Mayer R, et al. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181:113–123

    PubMed  Google Scholar 

  14. DeCosse JJ, et al. Influence of high-pressure oxygen and chemotherapy on the AMel 4 hamster melanoma. Cancer Res 1966;26:287–292

    PubMed  CAS  Google Scholar 

  15. Takiguchi N, et al. Use of 5-FU plus hyperbaric oxygen for treating malignant tumors: evaluation of antitumor effect and measurement of 5-FU in individual organs. Cancer Chemother Pharmacol 2001;47:11–14

    PubMed  CAS  Google Scholar 

  16. Huang Z, et al. Hyperoxygenation enhances the tumor cell killing of photofrin-mediated photodynamic therapy. Photochem Photobiol 2003;78:496-502

    PubMed  CAS  Google Scholar 

  17. Moulder JE, et al. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev 1987;5:313–341

    PubMed  CAS  Google Scholar 

  18. Knisely JP, et al. Importance of hypoxia in the biology and treatment of brain tumors. Neuroimaging Clin N Am 2002;12:525–536

    PubMed  Google Scholar 

  19. Puffer HW, et al. Preliminary observations of oxygen levels in microcirculation of tumors in C3H mice. Adv Exp Med Biol 1976;75:605–610

    PubMed  CAS  Google Scholar 

  20. Kizaka-Kondoh S, et al. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003;94:1021–1028

    PubMed  CAS  Google Scholar 

  21. Brizel DM, et al. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Physics 1997;38:285–289

    CAS  Google Scholar 

  22. Dunst J, et al. Tumor hypoxia and systemic levels of vascular endothelial growth factor (VEGF) in head and neck cancers. Strahlenther Onkol 2001;177:469–473

    PubMed  CAS  Google Scholar 

  23. Hockel M, et al. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999;59:4525–4528

    PubMed  Google Scholar 

  24. Cvetkovic D, et al. Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer. Urology 2001;57:821–825

    PubMed  CAS  Google Scholar 

  25. Shi Q, et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999;3711–3721

  26. Cuisnier O, et al. Chronic hypoxia protects against gamma-irradiation-induced apoptosis by inducing bcl-2 up-regulation and inhibiting mitochondrial translocation and conformational change of bax protein. Int J Oncol 2003;23:1033–1041

    PubMed  CAS  Google Scholar 

  27. Vaupel P, et al. Tumor oxygenation and its relevance to tumor physiology and treatment. Adv Exp Med Biol 2003;510:45–49

    PubMed  CAS  Google Scholar 

  28. Vaupel P, et al. Tumor hypoxia and malignant progression. Methods Enzymol 2004;381:335–354

    PubMed  CAS  Google Scholar 

  29. Hockel M, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–4515

    PubMed  CAS  Google Scholar 

  30. Bachtiary B, et al. Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin Cancer Res 2003;9:2234–2240

    PubMed  CAS  Google Scholar 

  31. Hashizume H, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156:1363–1380

    PubMed  CAS  Google Scholar 

  32. Galmarini CM, et al. Multidrug resistance in cancer therapy: role of the microenvironment. Curr Opin Invest Drugs 2003;4:1416–1421

    CAS  Google Scholar 

  33. Chaplin DJ, et al. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987;47:597–601

    PubMed  CAS  Google Scholar 

  34. Sakamoto M, et al. Phenotype changes in tumor vessels associated with the progression of hepatocellular carcinoma. Jpn J Clin Oncol 1993;23:98–104

    PubMed  CAS  Google Scholar 

  35. Toi M, et al. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 1994;85:1045–1049

    PubMed  CAS  Google Scholar 

  36. Duque JL, et al. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 1999;54:523–527

    PubMed  CAS  Google Scholar 

  37. Karayiannakis AJ, et al. Serum vascular endothelial growth factor levels in pancreatic cancer patients correlate with advanced and metastatic disease and poor prognosis. Cancer Lett 2003;194:119–124

    PubMed  CAS  Google Scholar 

  38. Jacobsen J, et al. Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 2000;163:343–347

    PubMed  CAS  Google Scholar 

  39. Akbulut H, et al. Prognostic role of serum vascular endothelial growth factor, basic fibroblast growth factor and nitric oxide in patients with colorectal carcinoma. Cytokine 2002;20:184–190

    PubMed  CAS  Google Scholar 

  40. Ikeda E, et al. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995;270:19761–19766

    PubMed  Google Scholar 

  41. Ferrara N, et al. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25

    PubMed  CAS  Google Scholar 

  42. Leung DW, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309

    PubMed  CAS  Google Scholar 

  43. Horiuchi A, et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res 2002;22:2697–2702

    PubMed  CAS  Google Scholar 

  44. Rofstad EK, et al. Hypoxia-induced angiogenesis and vascular endothelial growth factor secretion in human melanoma. Br J Cancer 1998;77:897–902

    PubMed  CAS  Google Scholar 

  45. Ziemer LS, et al. Hypoxia and VEGF mRNA expression in human tumors. Neoplasia 2001;3:500–508

    PubMed  CAS  Google Scholar 

  46. Shweiki D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845

    PubMed  CAS  Google Scholar 

  47. Plate KH, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992;359:845–848

    PubMed  CAS  Google Scholar 

  48. White FC, et al. VEGF mRNA is reversibly stabilized by hypoxia and persistently stabilized in VEGF-overexpressing human tumor cell lines. Growth Factors 1995;12:289–301

    PubMed  CAS  Google Scholar 

  49. Levy AP, et al. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995;270:13333–13340

    PubMed  CAS  Google Scholar 

  50. Stein I, et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998;18:3112–3119

    PubMed  CAS  Google Scholar 

  51. Schoch HJ, et al. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 2002;125:2549–2557

    PubMed  Google Scholar 

  52. Iyer NV, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998;12:149–162

    PubMed  CAS  Google Scholar 

  53. Wang GL, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92:5510–5514

    PubMed  CAS  Google Scholar 

  54. Tang N, et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004;6:485–495

    PubMed  CAS  Google Scholar 

  55. Forsythe JA, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–4613

    PubMed  CAS  Google Scholar 

  56. Semenza GL, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp 2001;240:251–264

    PubMed  CAS  Article  Google Scholar 

  57. Kuwabara K, et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995;92:4606–4610

    PubMed  CAS  Google Scholar 

  58. Hartmann A, et al. Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 1999;59:1578–1583

    PubMed  CAS  Google Scholar 

  59. Chavey C, et al. IL-8 is a novel marker for breast cancer. Third Int Symp Mol Biol Breast Cancer 2005;7(Suppl 2)

  60. Benoy IH, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 2004;10:7157–7162

    PubMed  CAS  Google Scholar 

  61. Brown NS, et al. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res 2000;60:6298–6302

    PubMed  CAS  Google Scholar 

  62. Kunz M, et al. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma: a potential mechanism for high tumor aggressiveness. Am J Pathol 1999;155:753–763

    PubMed  CAS  Google Scholar 

  63. Giri D, et al. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 2001;159:139–147

    PubMed  CAS  Google Scholar 

  64. D’Agnano I, et al. DNA ploidy, proliferative index, and epidermal growth factor receptor: expression and prognosis in patients with gastric cancers. Lab Invest 1995;72:432–438

    PubMed  CAS  Google Scholar 

  65. Van Schaeybroeck S, et al. Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clin Cancer Res 2005;11:7480–7489

    PubMed  Google Scholar 

  66. Oh MJ, et al. Detection of epidermal growth factor receptor in the serum of patients with cervical carcinoma. Clin Cancer Res 2000;6:4760–4763

    PubMed  CAS  Google Scholar 

  67. Gazzaniga P, et al. Detection of epidermal growth factor receptor mRNA in peripheral blood: a new marker of circulating neoplastic cells in bladder cancer patients. clin Cancer Res 2001;7:577–583

    PubMed  CAS  Google Scholar 

  68. Graeber TG, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996;379:88–91

    PubMed  CAS  Google Scholar 

  69. Shaw P, et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 1992;89:4495–4499

    PubMed  CAS  Google Scholar 

  70. Brown NS, et al. Hypoxia and oxidative stress in breast cancer; oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 2001;3:323–327

    PubMed  CAS  Google Scholar 

  71. Bergh J, et al. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1995;1:1029–1034

    PubMed  CAS  Google Scholar 

  72. Havrilesky L, et al. Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2003;21:3814–3825

    PubMed  CAS  Google Scholar 

  73. Baker SJ, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217–221

    PubMed  Google Scholar 

  74. Chadeneau C, et al. Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Camcer Res 1995;55:2533–2536

    CAS  Google Scholar 

  75. Oishi T, et al. Alteration of telomerase activity associated with development and extension of epithelial ovarian cancer. Obstet Gynecol 1998;91:568–571

    PubMed  CAS  Google Scholar 

  76. Kuniyasu H, et al. Expression of human telomerase RNA is an early event of stomach carcinogenesis. Jpn J Cancer Res 1997;88:103–107

    PubMed  CAS  Google Scholar 

  77. Kumaki F, et al. Telomerase activity and expression of human telomerase RNA component and human telomerase reverse transcriptase in lung carcinomas. Hum Pathol 2001;188–195

  78. Hiyama K, et al. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 1995;895–902

  79. Minamino T, et al. Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol 2001;3336–3342

  80. Ravi R, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000;14:34–44

    PubMed  CAS  Google Scholar 

  81. Koukourakis MI, et al. Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res 2001;61:1830–1832

    PubMed  CAS  Google Scholar 

  82. Hockenbery D, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348:334–336

    PubMed  CAS  Google Scholar 

  83. Lowe SW, et al. Apoptosis in cancer. Carcinogenesis 2000;21:485–495

    PubMed  CAS  Google Scholar 

  84. Warburg O, et al. On growth of cancer cells in media in which glucose is replaced by galactose. Hoppe Seylers Z Physiol Chem 1967;348:1686–1687

    PubMed  CAS  Google Scholar 

  85. Kondo Y, et al. Over expression of hypoxia-inducible factor-1alpha in renal and bladder cancer cells increases tumorigenic potency. J Urol 2005;173:1762–1766

    PubMed  CAS  Google Scholar 

  86. Semenza GL, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994;269:23757–23763

    PubMed  CAS  Google Scholar 

  87. Webster KA, et al. Coordinate reciprocal trends in glycolytic and mitochondrial transcript accumulations during the in vitro differentiation of human myoblasts. J Cell Physiol 1990;142:566–573

    PubMed  CAS  Google Scholar 

  88. Maxwell PH, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94:8104–8109

    PubMed  CAS  Google Scholar 

  89. Bustamante E, et al. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A 1977;74:3735–3739

    PubMed  CAS  Google Scholar 

  90. Mathupala SP, et al. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 1995;270:16918–16925

    PubMed  CAS  Google Scholar 

  91. Lu H, et al. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis: oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Biol Chem 2002;277:23111–23115

    PubMed  CAS  Google Scholar 

  92. Dang CV, et al. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 1997;29:345–354

    PubMed  CAS  Google Scholar 

  93. Elstrom RL, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004;64:3892–3899

    PubMed  CAS  Google Scholar 

  94. Cohen G, et al. Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 1963;2:1420–1428

    PubMed  CAS  Google Scholar 

  95. Talior I, et al. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab 2003;285:E295–E302

    PubMed  CAS  Google Scholar 

  96. McMullin MF. The molecular basis of disorders of red cell enzymes. J Clin Pathol 1999;52:241–244

    PubMed  CAS  Article  Google Scholar 

  97. Aw TY. Cellular redox: a modulator of intestinal epithelial cell proliferation. News Physiol Sci 2003;18:201–204

    PubMed  CAS  Google Scholar 

  98. Kamata H, et al. Redox regulation of cellular signalling. Cell Signal 1999;11:1–14

    PubMed  CAS  Google Scholar 

  99. Benhar M, et al. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 2002;3:420–425

    PubMed  CAS  Google Scholar 

  100. Blokhina O, et al. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann bot 2003; 91(Spec No):179–194

    PubMed  CAS  Google Scholar 

  101. Sharkey S. Current indications for hyperbaric oxygen therapy. Austr Defence Force Health 2000;1:64–72

    Google Scholar 

  102. Jackson AL, et al. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001;477:7–21

    PubMed  CAS  Google Scholar 

  103. Szatrowski TP, et al. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991;51:794–798

    PubMed  CAS  Google Scholar 

  104. Wiseman H, et al. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313( Pt 1):17–29

    PubMed  CAS  Google Scholar 

  105. Kuhn MA. Oxygen free radicals and antioxidants. AJN Am J Nurs 2003;103:58–62

    Google Scholar 

  106. Laurent A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005;65:948–956

    PubMed  CAS  Google Scholar 

  107. Behrend L, et al. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 2003;31:1441–1444

    PubMed  CAS  Google Scholar 

  108. Arnold RS, et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 2001;98:5550–5555

    PubMed  CAS  Google Scholar 

  109. Suh YA, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999;401:79–82

    PubMed  CAS  Google Scholar 

  110. Shen H, et al. Importance of glutathione and associated enzymes in drug response. Oncol Res 1997;9:295–302

    PubMed  CAS  Google Scholar 

  111. Harrison LB, et al. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002;7:492–508

    PubMed  Google Scholar 

  112. Kaelin CM, et al. The effects of hyperbaric oxygen on free flaps in rats. Arch Surg 1990;125:607–609

    PubMed  CAS  Google Scholar 

  113. Kong Q, et al. A threshold concept for cancer therapy. Med Hypotheses 2000;55:29–35

    PubMed  CAS  Google Scholar 

  114. Hileman EO, et al. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 2004;53:209–219

    PubMed  CAS  Google Scholar 

  115. Portakal O, et al. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 2000;33:279–284

    PubMed  CAS  Google Scholar 

  116. Choi AM, et al. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 1996;15:9–19

    PubMed  CAS  Google Scholar 

  117. Toyokuni S, et al. Persistent oxidative stress in cancer. FEBS Lett 1995;358:1–3

    PubMed  CAS  Google Scholar 

  118. Zhou S, et al. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 2001;121:151–157

    PubMed  CAS  Google Scholar 

  119. Gackowski D, et al. Persistent oxidative stress in colorectal carcinoma patients. Int J Cancer 2002;101:395–397

    PubMed  CAS  Google Scholar 

  120. Goda N, et al. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 2003;23:359–369

    PubMed  CAS  Google Scholar 

  121. Baish JW, et al. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc Res 1996;51:327–346

    PubMed  CAS  Google Scholar 

  122. Alagoz T, et al. Evaluation of hyperbaric oxygen as a chemosensitizer in the treatment of epithelial ovarian cancer in xenografts in mice. Cancer 1995;75:2313–2322

    PubMed  CAS  Google Scholar 

  123. Thom SR. Hyperbaric Oxygen Therapy: A Committee Report. Bethesda, Undersea and Hyperbaric Medical Society, 1992;20814

  124. Zamboni WA, et al. The effect of acute hyperbaric oxygen therapy on axial pattern skin flap survival when administered during and after total ischemia. J Reconstr Microsurg 1989;5:343–350

    PubMed  CAS  Google Scholar 

  125. Erdmann D, et al. Skin allograft rejection and hyperbaric oxygen treatment in immune-histoincompatible mice. Undersea Hyperb Med 1995;22:395–399

    PubMed  CAS  Google Scholar 

  126. Granowitz EV, et al. Exposure to increased pressure or hyperbaric oxygen suppresses interferon-gamma secretion in whole blood cultures of healthy humans. Undersea Hyperb Med 2002;29:216–225

    PubMed  CAS  Google Scholar 

  127. Marx RE, et al. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 1990;160:519–524

    PubMed  Google Scholar 

  128. Meltzer T, et al. The effect of hyperbaric oxygen on the bursting strength and rate of vascularization of skin wounds in the rat. Am Surg 1986;52:659–662

    PubMed  CAS  Google Scholar 

  129. Feldmeier J, et al. Hyperbaric oxygen: does it promote growth or recurrence of malignancy? Undersea Hyperb Med 2003;30:1–18

    PubMed  CAS  Google Scholar 

  130. Hunt TK. The physiology of wound healing. Ann Emerg Med 1988;17:1265–1273

    PubMed  CAS  Google Scholar 

  131. Marx RE, et al. Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol 1987;64:379–390

    PubMed  CAS  Google Scholar 

  132. Marx RE, Johnson RP. Problem wounds in oral and maxillofacial surgery: the role of hyperbaric oxygen. In: Davis IC, Hunt TK, editors, Problem Wounds: the Role of Oxygen. New York, Elsevier, 1988; 65–123

    Google Scholar 

  133. Phillips SJ. Physiology of wound healing and surgical wound care. ASAIO J 2000;46:S2–S5

    PubMed  CAS  Google Scholar 

  134. Conconi MT, et al. Effects of hyperbaric oxygen on proliferative and apoptotic activities and reactive oxygen species generation in mouse fibroblast 3T3/J2 cell line. J Invest Med 2003;51:227–232

    CAS  Google Scholar 

  135. Lian QL, et al. Effects of hyperbaric oxygen on S-180 sarcoma in mice. Undersea Hyperb Med 1995;22:153–160

    PubMed  CAS  Google Scholar 

  136. Johnson RJR, Lauchlan SC. Epidermoid carcinoma of the cervix treated by 60Co therapy and hyperbaric oxygen. In: Proceedings of the third International Congress on Hyperbaric Medicine, 1966;648–652

  137. Shewell J, et al. The effect of hyperbaric oxygen treatment on pulmonary metastasis in the C3H mouse. Eur J Cancer (Oxf) 1980;16:253–259

    CAS  Google Scholar 

  138. McMillan T, et al. The effect of hyperbaric oxygen on oral mucosal carcinoma. Laryngoscope 1989;99:241–244

    PubMed  CAS  Google Scholar 

  139. Valaitis J, et al. Effect of hyperbaric oxygen and nitrogen mustard (NSC-762) on Ehrlich ascites tumor. Cancer Chemother Rep 1968;52(Pt 1):405–412

    PubMed  CAS  Google Scholar 

  140. Cade IS, et al. Megavoltage radiotherapy in hyperbaric oxygen: a controlled trial. Cancer 1967;20:817–821

    PubMed  CAS  Google Scholar 

  141. Eltorai I, et al. Does hyperbaric oxygenation provoke an occult carcinoma in man? In: Proceedings of the VIII International Conference on Hyperbaric Medicine, North Carolina, 1987;18–27

  142. Bean JW, et al. Reaction of Ehrlich ascites cells in exposure to oxygen at high pressure. Cancer Res 1966;26:2380–2385

    PubMed  Google Scholar 

  143. McCredie JA, et al. Effects of hyperbaric oxygen on growth and metastases of the C3HBA tumor in the mouse. Cancer 1966;19:1537–1542

    PubMed  CAS  Google Scholar 

  144. Suit HD, et al. Effect of daily exposure to high pressure oxygen on tumor growth. Am J Roentgenol Radium Ther Nucl Med 1966;97:1019–1022

    PubMed  CAS  Google Scholar 

  145. Johnson RE, et al. Hyperbaric oxygen effect on experimental tumor growth. Radiology 1967;88:775–777

    PubMed  CAS  Google Scholar 

  146. Feder BH, et al. The effect of hyperbaric oxygen on pulmonary metastases in C3H mice. Radiology 1968;90:1181–1184

    PubMed  Google Scholar 

  147. Johnson RJR, et al. The effect of hyperbaric oxygen on tumor metastases in mice. Clin Radiol 1971;22:538–540

    PubMed  CAS  Google Scholar 

  148. Mestrovic J, et al. Suppression of rat tumor colonies in the lung by oxygen at high pressure is a local effect. Clin Exp Metastasis 1990;8:113–119

    PubMed  CAS  Google Scholar 

  149. Dettmer CM, et al. The effect of increased oxygen tensions upon animal tumor growth. Am J Roentgenolo Radium Ther Nucl Med 1968;102:804–810

    CAS  Google Scholar 

  150. Bradfield JJ, et al. Rapid progression of head and neck squamous carcinoma after hyperbaric oxygenation. Otolaryngol Head Neck Surg 1996;114:793–797

    PubMed  CAS  Google Scholar 

  151. Van den Brenk HA, et al. An analysis of the progression and development of metastases in patients receiving x-radiation in hyperbaric oxygen. Clin Radiol 1967;18:54–61

    PubMed  Google Scholar 

  152. Dische S. Hyperbaric oxygen: the Medical Research Council trials and their clinical significance. Br J Radiol 1978;51:888–894

    PubMed  CAS  Google Scholar 

  153. Perrins DJD, Wiernik G. Controlled trials in carcinoma of the bladder. In: Smith G, editor, Proceedings of the Sixth International Congress on Hyperbaric Medicine. Aberdeen, Scotland, University Press, 1977;253–258

    Google Scholar 

  154. Henk JM. Late results of a trial of hyperbaric oxygen and radiotherapy in head and neck cancer: a rationale for hypoxic cell sensitizers? Int J Radiat Oncol Biol Phys 1986;12:1339–1341

    PubMed  CAS  Google Scholar 

  155. Sealy R, et al. Irradiation with misonidazole and hyperbaric oxygen: final report on a randomized trial in advanced head and neck cancer. Int J Radiat Oncol Biol Phys 1986;12:1343–1346

    PubMed  CAS  Google Scholar 

  156. Granstrom G. Hyperbaric oxygen therapy decreases the rejection rate of osseointegrated implants after radiotherapy. Strahlenther Onkol 1996;172:20–21

    PubMed  Google Scholar 

  157. Maier A, et al. Combined photodynamic therapy and hyperbaric oxygenation in carcinoma of the esophagus and the esophago-gastric junction. Eur J Cardiothorac Surg 2000;18:649–655

    PubMed  CAS  Google Scholar 

  158. Gray LH, et al. The concentration of oxygen dissolved in tissue at the time or irradiation as factor in radiotherapy. Br J Radiol 1953;26:638

    PubMed  CAS  Article  Google Scholar 

  159. Chen Q, et al. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 2002;76:197–203

    PubMed  CAS  Google Scholar 

  160. Teicher BA, et al. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 1981;41:73–81

    PubMed  CAS  Google Scholar 

  161. Evans JC. Metastasis following radiotherapy in hyperbaric oxygen. Radiology 1969;93:1155–1157

    PubMed  CAS  Google Scholar 

  162. Martin DF, et al. Enhancement of tumor radiation response by the combination of a perfluorochemical emulsion and hyperbaric oxygen. Int J Radiat Oncol Biol Phys 1987;747–751

  163. Frid IA, et al. Effects of hyperbaric oxygenation on tumor growth. Vopr Onkol 1989;35:970–973

    PubMed  CAS  Google Scholar 

  164. Granstrom G, Westin T, Lyden E, Bengt C, Magnusson BG, Edstrom S. Hyperbaric oxygenation does not stimulate experimental tumour growth. In: Proceedings from the XVIth EUBS meeting, Amsterdam, 1990;121–129

  165. Headley DB, et al. The effect of hyperbaric oxygen on growth of human squamous cell carcinoma xenografts. Arch Otolaryngol Head Neck Surg 1991;117:1269–1272

    PubMed  CAS  Google Scholar 

  166. Sklizovic D, et al. Hyperbaric oxygen therapy and squamous cell carcinoma cell line growth. Head Neck 1993;15:236–240

    PubMed  CAS  Google Scholar 

  167. McDonald KR, et al. Effect of hyperbaric oxygenation on existing oral mucosal carcinoma. Laryngoscope 1996;106:957–959

    PubMed  CAS  Google Scholar 

  168. Shi Y, et al. Effects of hyperbaric oxygen exposure on experimental head and neck tumor growth, oxygenation, and vasculature. Head Neck 2005;27:362–369

    PubMed  Google Scholar 

  169. Johnson RJ, et al. Sequential study on the effect of the addition of hyperbaric oxygen on the 5 year survival rates of carcinoma of the cervix treated with conventional fractional irradiations. Am J Roentgenol Radium Ther Nucl Med 1974;120:111–117

    PubMed  CAS  Google Scholar 

  170. Bennett MB, Sealy R, Hockly J. The treatment of stage III squamous cell carcinoma of the cervix in air and in hyperbaric oxygen. In: Smith G, editor, Proceedings of the Sixth International Congress on Hyperbaric Oxygen. Aberdeen, Scotland, University press, 1977;247–252

    Google Scholar 

  171. Henk JM, et al. Radiotherapy and hyperbaric oxygen in head and neck cancer: interim report of second clinical trial. Lancet 1977;2:104–105

    PubMed  CAS  Google Scholar 

  172. Watson ER, et al. Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the cervix. Br J Radiol 1978;51:879–887

    PubMed  CAS  Google Scholar 

  173. Brady LW, et al. Hyperbaric oxygen therapy for carcinoma of the cervix—stages IIB, IIIA, IIIB and IVA: results of a randomized study by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 1981;7:991–998

    PubMed  CAS  Google Scholar 

  174. Granstrom G. Tumor recurrence and development of new head and neck cancers after HDO2—treatment a prospective clinical study. In: Proceedings: International Joint Meeting on Hyperbaric and Underwater Medicine, Milan, 1996;47–60

  175. Dische S, et al. Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial. Radiother Oncol 1999;53:93–98

    PubMed  CAS  Google Scholar 

  176. Haffty BG, et al. Radiation therapy with hyperbaric oxygen at 4 atmospheres pressure in the management of squamous cell carcinoma of the head and neck: results of a randomized clinical trial: carcinoma of the larynx treated with hypofractionated radiation and hyperbaric oxygen: long-term tumor control and complications. Cancer J Sci Am 1999;5:341–347

    PubMed  CAS  Google Scholar 

  177. Haffty BG, et al. Carcinoma of the larynx treated with hypofractionated radiation and hyperbaric oxygen: long-term tumor control and complications. Int J Radiat Oncol Biol Phys 1999;45:13–20

    PubMed  CAS  Google Scholar 

  178. Kohshi K, et al. Effects of radiotherapy after hyperbaric oxygenation on malignant gliomas. Br J Cancer 1999;80:236–241

    PubMed  Google Scholar 

  179. Feldmeier JJ, et al. Hyperbaric oxygen an adjunctive treatment for delayed radiation injuries of the abdomen and pelvis. Undersea Hyperb Med 1996;23:205–213

    PubMed  CAS  Google Scholar 

  180. Horsman M, et al. The Oxygen Effect: Basic Clinical Radiobiology, 2nd edition. London, Arnold, 1997

    Google Scholar 

  181. Overgaard J, et al. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 1996;6:10–21

    PubMed  Google Scholar 

  182. Lartigau E, at al. Hyperbaric oxygen in the treatment of radio-induced lesions in normal tissues. Presented to the European Society for Therapuetic Radiology and Oncology and European Committee for Hyperbaric Medicine, Lisbon, 2001

  183. Kalns J, et al. The effect of hyperbaric oxygen on growth and chemosensitivity of metastatic prostate cancer. Anticancer Res 1998;18:363–367

    PubMed  CAS  Google Scholar 

  184. Stuhr LE, et al. Hyperbaric oxygen alone or combined with 5-FU attenuates growth of DMBA-induced rat mammary tumors. Cancer Lett 2004;210:35–40

    PubMed  CAS  Google Scholar 

  185. Narkowicz CK, et al. Hyperbaric oxygen therapy increases free radical levels in the blood of humans. Free Radic Res Commun 1993;19:71–80

    PubMed  CAS  Google Scholar 

  186. Dennog C, et al. Analysis of oxidative DNA damage and HPRT mutations in humans after hyperbaric oxygen treatment. Mutat Res 1999;431:351–359

    PubMed  CAS  Google Scholar 

  187. Kalns JE, et al. Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cell Dev Biol Anim 1999;35:98–101

    PubMed  CAS  Google Scholar 

  188. Teas J, et al. Can hyperbaric oxygen therapy reduce breast cancer treatment-related lymphedema? A pilot study. J Womens Health (Larchmt) 2004;13:1008–1018

    Article  Google Scholar 

  189. Yarnold J. Phase II randomized study of hyperbaric oxygen therapy versus standard management in women with chronic arm lymphedema after radiotherapy for early breast cancer. Clinical trial in progress, UK, 2004

  190. Maier A, et al. Does hyperbaric oxygen enhance the effect of photodynamic therapy in patients with advanced esophageal carcinoma? A clinical pilot study. Endoscopy 2000;32:42–48

    PubMed  CAS  Google Scholar 

  191. Tomaselli, et al. Acute effects of combined photodynamic therapy and hyperbaric oxygenation in lung cancer—a clinical pilot study. Lasers Surg Med 2001;28:399–403

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurstine Daruwalla B.Sc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daruwalla, J., Christophi, C. Hyperbaric Oxygen Therapy for Malignancy: A Review. World J. Surg. 30, 2112 (2006). https://doi.org/10.1007/s00268-006-0190-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00268-006-0190-6

Keywords

  • Reactive Oxygen Species
  • Vascular Endothelial Growth Factor
  • Vascular Endothelial Growth Factor Expression
  • Vascular Endothelial Growth Factor mRNA
  • Angiogenic Switch