Vaupel P, et al. Blood flow, oxygen consumption and tissue oxygenation of human tumors. Adv Exp Med Biol 1990;277:895–905
PubMedÂ
CASÂ
Google ScholarÂ
Tandara AA, et al. Oxygen in wound healing—more than a nutrient. World J Surg 2004;28:294–300
PubMedÂ
Google ScholarÂ
Grolman RE, et al. Transcutaneous oxygen measurements predict a beneficial response to hyperbaric oxygen therapy in patients with nonhealing wounds and critical limb ischemia. Am Surg 2001;67:1072–1080
PubMedÂ
CASÂ
Google ScholarÂ
Hammarlund C, et al. Hyperbaric oxygen treatment of healthy volunteers with U.V.-irradiated blister wounds. Burns 1991;17:296–301
PubMedÂ
CASÂ
Google ScholarÂ
Thom SR, et al. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 1995;25:474–480
PubMedÂ
CASÂ
Google ScholarÂ
Weaver LK, et al. Hyperbaric oxygen for acute carbon monoxide poisoning.N Engl J Med 2002;347:1057–1067
PubMedÂ
CASÂ
Google ScholarÂ
Dean BS, et al. Coma reversal with cerebral dysfunction recovery after repetitive hyperbaric oxygen therapy for severe carbon monoxide poisoning. Am J Emerg Med 1993;11:616–618
PubMedÂ
CASÂ
Google ScholarÂ
Hawkins M, et al. Severe carbon monoxide poisoning: outcome after hyperbaric oxygen therapy. Br J Anaesth 2000;84:584–586
PubMedÂ
CASÂ
Google ScholarÂ
Durmaz E, et al. Carbon monoxide poisoning and hyperbaric oxygen therapy. Br J Nurs 1999;8:1067–1072
PubMedÂ
CASÂ
Google ScholarÂ
Wilkinson D, et al. Hyperbaric oxygen treatment and survival from necrotizing soft tissue infection. Arch Surg 2004;139:1339–1345
PubMedÂ
Google ScholarÂ
Henk JM, et al. Radiotherapy and hyperbaric oxygen in head and neck cancer: final report of first controlled clinical trial. Lancet 1977;2:101–103
PubMedÂ
CASÂ
Google ScholarÂ
Petre PM, et al. Hyperbaric oxygen as a chemotherapy adjuvant in the treatment of metastatic lung tumors in a rat model. J Thorac Cardiovasc Surg 2003;125:85–95
PubMedÂ
CASÂ
Google ScholarÂ
Mayer R, et al. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181:113–123
PubMedÂ
Google ScholarÂ
DeCosse JJ, et al. Influence of high-pressure oxygen and chemotherapy on the AMel 4 hamster melanoma. Cancer Res 1966;26:287–292
PubMedÂ
CASÂ
Google ScholarÂ
Takiguchi N, et al. Use of 5-FU plus hyperbaric oxygen for treating malignant tumors: evaluation of antitumor effect and measurement of 5-FU in individual organs. Cancer Chemother Pharmacol 2001;47:11–14
PubMedÂ
CASÂ
Google ScholarÂ
Huang Z, et al. Hyperoxygenation enhances the tumor cell killing of photofrin-mediated photodynamic therapy. Photochem Photobiol 2003;78:496-502
PubMedÂ
CASÂ
Google ScholarÂ
Moulder JE, et al. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev 1987;5:313–341
PubMedÂ
CASÂ
Google ScholarÂ
Knisely JP, et al. Importance of hypoxia in the biology and treatment of brain tumors. Neuroimaging Clin N Am 2002;12:525–536
PubMedÂ
Google ScholarÂ
Puffer HW, et al. Preliminary observations of oxygen levels in microcirculation of tumors in C3H mice. Adv Exp Med Biol 1976;75:605–610
PubMedÂ
CASÂ
Google ScholarÂ
Kizaka-Kondoh S, et al. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003;94:1021–1028
PubMedÂ
CASÂ
Google ScholarÂ
Brizel DM, et al. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Physics 1997;38:285–289
CASÂ
Google ScholarÂ
Dunst J, et al. Tumor hypoxia and systemic levels of vascular endothelial growth factor (VEGF) in head and neck cancers. Strahlenther Onkol 2001;177:469–473
PubMedÂ
CASÂ
Google ScholarÂ
Hockel M, et al. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999;59:4525–4528
PubMedÂ
Google ScholarÂ
Cvetkovic D, et al. Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer. Urology 2001;57:821–825
PubMedÂ
CASÂ
Google ScholarÂ
Shi Q, et al. Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 1999;3711–3721
Cuisnier O, et al. Chronic hypoxia protects against gamma-irradiation-induced apoptosis by inducing bcl-2 up-regulation and inhibiting mitochondrial translocation and conformational change of bax protein. Int J Oncol 2003;23:1033–1041
PubMedÂ
CASÂ
Google ScholarÂ
Vaupel P, et al. Tumor oxygenation and its relevance to tumor physiology and treatment. Adv Exp Med Biol 2003;510:45–49
PubMedÂ
CASÂ
Google ScholarÂ
Vaupel P, et al. Tumor hypoxia and malignant progression. Methods Enzymol 2004;381:335–354
PubMedÂ
CASÂ
Google ScholarÂ
Hockel M, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–4515
PubMedÂ
CASÂ
Google ScholarÂ
Bachtiary B, et al. Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin Cancer Res 2003;9:2234–2240
PubMedÂ
CASÂ
Google ScholarÂ
Hashizume H, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156:1363–1380
PubMedÂ
CASÂ
Google ScholarÂ
Galmarini CM, et al. Multidrug resistance in cancer therapy: role of the microenvironment. Curr Opin Invest Drugs 2003;4:1416–1421
CASÂ
Google ScholarÂ
Chaplin DJ, et al. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987;47:597–601
PubMedÂ
CASÂ
Google ScholarÂ
Sakamoto M, et al. Phenotype changes in tumor vessels associated with the progression of hepatocellular carcinoma. Jpn J Clin Oncol 1993;23:98–104
PubMedÂ
CASÂ
Google ScholarÂ
Toi M, et al. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 1994;85:1045–1049
PubMedÂ
CASÂ
Google ScholarÂ
Duque JL, et al. Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology 1999;54:523–527
PubMedÂ
CASÂ
Google ScholarÂ
Karayiannakis AJ, et al. Serum vascular endothelial growth factor levels in pancreatic cancer patients correlate with advanced and metastatic disease and poor prognosis. Cancer Lett 2003;194:119–124
PubMedÂ
CASÂ
Google ScholarÂ
Jacobsen J, et al. Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 2000;163:343–347
PubMedÂ
CASÂ
Google ScholarÂ
Akbulut H, et al. Prognostic role of serum vascular endothelial growth factor, basic fibroblast growth factor and nitric oxide in patients with colorectal carcinoma. Cytokine 2002;20:184–190
PubMedÂ
CASÂ
Google ScholarÂ
Ikeda E, et al. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995;270:19761–19766
PubMedÂ
Google ScholarÂ
Ferrara N, et al. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25
PubMedÂ
CASÂ
Google ScholarÂ
Leung DW, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309
PubMedÂ
CASÂ
Google ScholarÂ
Horiuchi A, et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res 2002;22:2697–2702
PubMedÂ
CASÂ
Google ScholarÂ
Rofstad EK, et al. Hypoxia-induced angiogenesis and vascular endothelial growth factor secretion in human melanoma. Br J Cancer 1998;77:897–902
PubMedÂ
CASÂ
Google ScholarÂ
Ziemer LS, et al. Hypoxia and VEGF mRNA expression in human tumors. Neoplasia 2001;3:500–508
PubMedÂ
CASÂ
Google ScholarÂ
Shweiki D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359:843–845
PubMedÂ
CASÂ
Google ScholarÂ
Plate KH, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992;359:845–848
PubMedÂ
CASÂ
Google ScholarÂ
White FC, et al. VEGF mRNA is reversibly stabilized by hypoxia and persistently stabilized in VEGF-overexpressing human tumor cell lines. Growth Factors 1995;12:289–301
PubMedÂ
CASÂ
Google ScholarÂ
Levy AP, et al. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995;270:13333–13340
PubMedÂ
CASÂ
Google ScholarÂ
Stein I, et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998;18:3112–3119
PubMedÂ
CASÂ
Google ScholarÂ
Schoch HJ, et al. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 2002;125:2549–2557
PubMedÂ
Google ScholarÂ
Iyer NV, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998;12:149–162
PubMedÂ
CASÂ
Google ScholarÂ
Wang GL, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92:5510–5514
PubMedÂ
CASÂ
Google ScholarÂ
Tang N, et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004;6:485–495
PubMedÂ
CASÂ
Google ScholarÂ
Forsythe JA, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–4613
PubMedÂ
CASÂ
Google ScholarÂ
Semenza GL, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp 2001;240:251–264
PubMedÂ
CASÂ
ArticleÂ
Google ScholarÂ
Kuwabara K, et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995;92:4606–4610
PubMedÂ
CASÂ
Google ScholarÂ
Hartmann A, et al. Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 1999;59:1578–1583
PubMedÂ
CASÂ
Google ScholarÂ
Chavey C, et al. IL-8 is a novel marker for breast cancer. Third Int Symp Mol Biol Breast Cancer 2005;7(Suppl 2)
Benoy IH, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 2004;10:7157–7162
PubMedÂ
CASÂ
Google ScholarÂ
Brown NS, et al. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res 2000;60:6298–6302
PubMedÂ
CASÂ
Google ScholarÂ
Kunz M, et al. Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma: a potential mechanism for high tumor aggressiveness. Am J Pathol 1999;155:753–763
PubMedÂ
CASÂ
Google ScholarÂ
Giri D, et al. Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 2001;159:139–147
PubMedÂ
CASÂ
Google ScholarÂ
D’Agnano I, et al. DNA ploidy, proliferative index, and epidermal growth factor receptor: expression and prognosis in patients with gastric cancers. Lab Invest 1995;72:432–438
PubMedÂ
CASÂ
Google ScholarÂ
Van Schaeybroeck S, et al. Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clin Cancer Res 2005;11:7480–7489
PubMedÂ
Google ScholarÂ
Oh MJ, et al. Detection of epidermal growth factor receptor in the serum of patients with cervical carcinoma. Clin Cancer Res 2000;6:4760–4763
PubMedÂ
CASÂ
Google ScholarÂ
Gazzaniga P, et al. Detection of epidermal growth factor receptor mRNA in peripheral blood: a new marker of circulating neoplastic cells in bladder cancer patients. clin Cancer Res 2001;7:577–583
PubMedÂ
CASÂ
Google ScholarÂ
Graeber TG, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996;379:88–91
PubMedÂ
CASÂ
Google ScholarÂ
Shaw P, et al. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 1992;89:4495–4499
PubMedÂ
CASÂ
Google ScholarÂ
Brown NS, et al. Hypoxia and oxidative stress in breast cancer; oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 2001;3:323–327
PubMedÂ
CASÂ
Google ScholarÂ
Bergh J, et al. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1995;1:1029–1034
PubMedÂ
CASÂ
Google ScholarÂ
Havrilesky L, et al. Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2003;21:3814–3825
PubMedÂ
CASÂ
Google ScholarÂ
Baker SJ, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989;244:217–221
PubMedÂ
Google ScholarÂ
Chadeneau C, et al. Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Camcer Res 1995;55:2533–2536
CASÂ
Google ScholarÂ
Oishi T, et al. Alteration of telomerase activity associated with development and extension of epithelial ovarian cancer. Obstet Gynecol 1998;91:568–571
PubMedÂ
CASÂ
Google ScholarÂ
Kuniyasu H, et al. Expression of human telomerase RNA is an early event of stomach carcinogenesis. Jpn J Cancer Res 1997;88:103–107
PubMedÂ
CASÂ
Google ScholarÂ
Kumaki F, et al. Telomerase activity and expression of human telomerase RNA component and human telomerase reverse transcriptase in lung carcinomas. Hum Pathol 2001;188–195
Hiyama K, et al. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 1995;895–902
Minamino T, et al. Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol 2001;3336–3342
Ravi R, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000;14:34–44
PubMedÂ
CASÂ
Google ScholarÂ
Koukourakis MI, et al. Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res 2001;61:1830–1832
PubMedÂ
CASÂ
Google ScholarÂ
Hockenbery D, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348:334–336
PubMedÂ
CASÂ
Google ScholarÂ
Lowe SW, et al. Apoptosis in cancer. Carcinogenesis 2000;21:485–495
PubMedÂ
CASÂ
Google ScholarÂ
Warburg O, et al. On growth of cancer cells in media in which glucose is replaced by galactose. Hoppe Seylers Z Physiol Chem 1967;348:1686–1687
PubMedÂ
CASÂ
Google ScholarÂ
Kondo Y, et al. Over expression of hypoxia-inducible factor-1alpha in renal and bladder cancer cells increases tumorigenic potency. J Urol 2005;173:1762–1766
PubMedÂ
CASÂ
Google ScholarÂ
Semenza GL, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994;269:23757–23763
PubMedÂ
CASÂ
Google ScholarÂ
Webster KA, et al. Coordinate reciprocal trends in glycolytic and mitochondrial transcript accumulations during the in vitro differentiation of human myoblasts. J Cell Physiol 1990;142:566–573
PubMedÂ
CASÂ
Google ScholarÂ
Maxwell PH, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94:8104–8109
PubMedÂ
CASÂ
Google ScholarÂ
Bustamante E, et al. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci U S A 1977;74:3735–3739
PubMedÂ
CASÂ
Google ScholarÂ
Mathupala SP, et al. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 1995;270:16918–16925
PubMedÂ
CASÂ
Google ScholarÂ
Lu H, et al. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis: oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Biol Chem 2002;277:23111–23115
PubMedÂ
CASÂ
Google ScholarÂ
Dang CV, et al. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 1997;29:345–354
PubMedÂ
CASÂ
Google ScholarÂ
Elstrom RL, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004;64:3892–3899
PubMedÂ
CASÂ
Google ScholarÂ
Cohen G, et al. Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 1963;2:1420–1428
PubMedÂ
CASÂ
Google ScholarÂ
Talior I, et al. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab 2003;285:E295–E302
PubMedÂ
CASÂ
Google ScholarÂ
McMullin MF. The molecular basis of disorders of red cell enzymes. J Clin Pathol 1999;52:241–244
PubMedÂ
CASÂ
ArticleÂ
Google ScholarÂ
Aw TY. Cellular redox: a modulator of intestinal epithelial cell proliferation. News Physiol Sci 2003;18:201–204
PubMedÂ
CASÂ
Google ScholarÂ
Kamata H, et al. Redox regulation of cellular signalling. Cell Signal 1999;11:1–14
PubMedÂ
CASÂ
Google ScholarÂ
Benhar M, et al. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 2002;3:420–425
PubMedÂ
CASÂ
Google ScholarÂ
Blokhina O, et al. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann bot 2003; 91(Spec No):179–194
PubMedÂ
CASÂ
Google ScholarÂ
Sharkey S. Current indications for hyperbaric oxygen therapy. Austr Defence Force Health 2000;1:64–72
Google ScholarÂ
Jackson AL, et al. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 2001;477:7–21
PubMedÂ
CASÂ
Google ScholarÂ
Szatrowski TP, et al. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991;51:794–798
PubMedÂ
CASÂ
Google ScholarÂ
Wiseman H, et al. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313( Pt 1):17–29
PubMedÂ
CASÂ
Google ScholarÂ
Kuhn MA. Oxygen free radicals and antioxidants. AJN Am J Nurs 2003;103:58–62
Google ScholarÂ
Laurent A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005;65:948–956
PubMedÂ
CASÂ
Google ScholarÂ
Behrend L, et al. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 2003;31:1441–1444
PubMedÂ
CASÂ
Google ScholarÂ
Arnold RS, et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A 2001;98:5550–5555
PubMedÂ
CASÂ
Google ScholarÂ
Suh YA, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999;401:79–82
PubMedÂ
CASÂ
Google ScholarÂ
Shen H, et al. Importance of glutathione and associated enzymes in drug response. Oncol Res 1997;9:295–302
PubMedÂ
CASÂ
Google ScholarÂ
Harrison LB, et al. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002;7:492–508
PubMedÂ
Google ScholarÂ
Kaelin CM, et al. The effects of hyperbaric oxygen on free flaps in rats. Arch Surg 1990;125:607–609
PubMedÂ
CASÂ
Google ScholarÂ
Kong Q, et al. A threshold concept for cancer therapy. Med Hypotheses 2000;55:29–35
PubMedÂ
CASÂ
Google ScholarÂ
Hileman EO, et al. Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 2004;53:209–219
PubMedÂ
CASÂ
Google ScholarÂ
Portakal O, et al. Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin Biochem 2000;33:279–284
PubMedÂ
CASÂ
Google ScholarÂ
Choi AM, et al. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 1996;15:9–19
PubMedÂ
CASÂ
Google ScholarÂ
Toyokuni S, et al. Persistent oxidative stress in cancer. FEBS Lett 1995;358:1–3
PubMedÂ
CASÂ
Google ScholarÂ
Zhou S, et al. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 2001;121:151–157
PubMedÂ
CASÂ
Google ScholarÂ
Gackowski D, et al. Persistent oxidative stress in colorectal carcinoma patients. Int J Cancer 2002;101:395–397
PubMedÂ
CASÂ
Google ScholarÂ
Goda N, et al. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 2003;23:359–369
PubMedÂ
CASÂ
Google ScholarÂ
Baish JW, et al. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc Res 1996;51:327–346
PubMedÂ
CASÂ
Google ScholarÂ
Alagoz T, et al. Evaluation of hyperbaric oxygen as a chemosensitizer in the treatment of epithelial ovarian cancer in xenografts in mice. Cancer 1995;75:2313–2322
PubMedÂ
CASÂ
Google ScholarÂ
Thom SR. Hyperbaric Oxygen Therapy: A Committee Report. Bethesda, Undersea and Hyperbaric Medical Society, 1992;20814
Zamboni WA, et al. The effect of acute hyperbaric oxygen therapy on axial pattern skin flap survival when administered during and after total ischemia. J Reconstr Microsurg 1989;5:343–350
PubMedÂ
CASÂ
Google ScholarÂ
Erdmann D, et al. Skin allograft rejection and hyperbaric oxygen treatment in immune-histoincompatible mice. Undersea Hyperb Med 1995;22:395–399
PubMedÂ
CASÂ
Google ScholarÂ
Granowitz EV, et al. Exposure to increased pressure or hyperbaric oxygen suppresses interferon-gamma secretion in whole blood cultures of healthy humans. Undersea Hyperb Med 2002;29:216–225
PubMedÂ
CASÂ
Google ScholarÂ
Marx RE, et al. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 1990;160:519–524
PubMedÂ
Google ScholarÂ
Meltzer T, et al. The effect of hyperbaric oxygen on the bursting strength and rate of vascularization of skin wounds in the rat. Am Surg 1986;52:659–662
PubMedÂ
CASÂ
Google ScholarÂ
Feldmeier J, et al. Hyperbaric oxygen: does it promote growth or recurrence of malignancy? Undersea Hyperb Med 2003;30:1–18
PubMedÂ
CASÂ
Google ScholarÂ
Hunt TK. The physiology of wound healing. Ann Emerg Med 1988;17:1265–1273
PubMedÂ
CASÂ
Google ScholarÂ
Marx RE, et al. Studies in the radiobiology of osteoradionecrosis and their clinical significance. Oral Surg Oral Med Oral Pathol 1987;64:379–390
PubMedÂ
CASÂ
Google ScholarÂ
Marx RE, Johnson RP. Problem wounds in oral and maxillofacial surgery: the role of hyperbaric oxygen. In: Davis IC, Hunt TK, editors, Problem Wounds: the Role of Oxygen. New York, Elsevier, 1988; 65–123
Google ScholarÂ
Phillips SJ. Physiology of wound healing and surgical wound care. ASAIO J 2000;46:S2–S5
PubMedÂ
CASÂ
Google ScholarÂ
Conconi MT, et al. Effects of hyperbaric oxygen on proliferative and apoptotic activities and reactive oxygen species generation in mouse fibroblast 3T3/J2 cell line. J Invest Med 2003;51:227–232
CASÂ
Google ScholarÂ
Lian QL, et al. Effects of hyperbaric oxygen on S-180 sarcoma in mice. Undersea Hyperb Med 1995;22:153–160
PubMedÂ
CASÂ
Google ScholarÂ
Johnson RJR, Lauchlan SC. Epidermoid carcinoma of the cervix treated by 60Co therapy and hyperbaric oxygen. In: Proceedings of the third International Congress on Hyperbaric Medicine, 1966;648–652
Shewell J, et al. The effect of hyperbaric oxygen treatment on pulmonary metastasis in the C3H mouse. Eur J Cancer (Oxf) 1980;16:253–259
CASÂ
Google ScholarÂ
McMillan T, et al. The effect of hyperbaric oxygen on oral mucosal carcinoma. Laryngoscope 1989;99:241–244
PubMedÂ
CASÂ
Google ScholarÂ
Valaitis J, et al. Effect of hyperbaric oxygen and nitrogen mustard (NSC-762) on Ehrlich ascites tumor. Cancer Chemother Rep 1968;52(Pt 1):405–412
PubMedÂ
CASÂ
Google ScholarÂ
Cade IS, et al. Megavoltage radiotherapy in hyperbaric oxygen: a controlled trial. Cancer 1967;20:817–821
PubMedÂ
CASÂ
Google ScholarÂ
Eltorai I, et al. Does hyperbaric oxygenation provoke an occult carcinoma in man? In: Proceedings of the VIII International Conference on Hyperbaric Medicine, North Carolina, 1987;18–27
Bean JW, et al. Reaction of Ehrlich ascites cells in exposure to oxygen at high pressure. Cancer Res 1966;26:2380–2385
PubMedÂ
Google ScholarÂ
McCredie JA, et al. Effects of hyperbaric oxygen on growth and metastases of the C3HBA tumor in the mouse. Cancer 1966;19:1537–1542
PubMedÂ
CASÂ
Google ScholarÂ
Suit HD, et al. Effect of daily exposure to high pressure oxygen on tumor growth. Am J Roentgenol Radium Ther Nucl Med 1966;97:1019–1022
PubMedÂ
CASÂ
Google ScholarÂ
Johnson RE, et al. Hyperbaric oxygen effect on experimental tumor growth. Radiology 1967;88:775–777
PubMedÂ
CASÂ
Google ScholarÂ
Feder BH, et al. The effect of hyperbaric oxygen on pulmonary metastases in C3H mice. Radiology 1968;90:1181–1184
PubMedÂ
Google ScholarÂ
Johnson RJR, et al. The effect of hyperbaric oxygen on tumor metastases in mice. Clin Radiol 1971;22:538–540
PubMedÂ
CASÂ
Google ScholarÂ
Mestrovic J, et al. Suppression of rat tumor colonies in the lung by oxygen at high pressure is a local effect. Clin Exp Metastasis 1990;8:113–119
PubMedÂ
CASÂ
Google ScholarÂ
Dettmer CM, et al. The effect of increased oxygen tensions upon animal tumor growth. Am J Roentgenolo Radium Ther Nucl Med 1968;102:804–810
CASÂ
Google ScholarÂ
Bradfield JJ, et al. Rapid progression of head and neck squamous carcinoma after hyperbaric oxygenation. Otolaryngol Head Neck Surg 1996;114:793–797
PubMedÂ
CASÂ
Google ScholarÂ
Van den Brenk HA, et al. An analysis of the progression and development of metastases in patients receiving x-radiation in hyperbaric oxygen. Clin Radiol 1967;18:54–61
PubMedÂ
Google ScholarÂ
Dische S. Hyperbaric oxygen: the Medical Research Council trials and their clinical significance. Br J Radiol 1978;51:888–894
PubMedÂ
CASÂ
Google ScholarÂ
Perrins DJD, Wiernik G. Controlled trials in carcinoma of the bladder. In: Smith G, editor, Proceedings of the Sixth International Congress on Hyperbaric Medicine. Aberdeen, Scotland, University Press, 1977;253–258
Google ScholarÂ
Henk JM. Late results of a trial of hyperbaric oxygen and radiotherapy in head and neck cancer: a rationale for hypoxic cell sensitizers? Int J Radiat Oncol Biol Phys 1986;12:1339–1341
PubMedÂ
CASÂ
Google ScholarÂ
Sealy R, et al. Irradiation with misonidazole and hyperbaric oxygen: final report on a randomized trial in advanced head and neck cancer. Int J Radiat Oncol Biol Phys 1986;12:1343–1346
PubMedÂ
CASÂ
Google ScholarÂ
Granstrom G. Hyperbaric oxygen therapy decreases the rejection rate of osseointegrated implants after radiotherapy. Strahlenther Onkol 1996;172:20–21
PubMedÂ
Google ScholarÂ
Maier A, et al. Combined photodynamic therapy and hyperbaric oxygenation in carcinoma of the esophagus and the esophago-gastric junction. Eur J Cardiothorac Surg 2000;18:649–655
PubMedÂ
CASÂ
Google ScholarÂ
Gray LH, et al. The concentration of oxygen dissolved in tissue at the time or irradiation as factor in radiotherapy. Br J Radiol 1953;26:638
PubMedÂ
CASÂ
ArticleÂ
Google ScholarÂ
Chen Q, et al. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 2002;76:197–203
PubMedÂ
CASÂ
Google ScholarÂ
Teicher BA, et al. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 1981;41:73–81
PubMedÂ
CASÂ
Google ScholarÂ
Evans JC. Metastasis following radiotherapy in hyperbaric oxygen. Radiology 1969;93:1155–1157
PubMedÂ
CASÂ
Google ScholarÂ
Martin DF, et al. Enhancement of tumor radiation response by the combination of a perfluorochemical emulsion and hyperbaric oxygen. Int J Radiat Oncol Biol Phys 1987;747–751
Frid IA, et al. Effects of hyperbaric oxygenation on tumor growth. Vopr Onkol 1989;35:970–973
PubMedÂ
CASÂ
Google ScholarÂ
Granstrom G, Westin T, Lyden E, Bengt C, Magnusson BG, Edstrom S. Hyperbaric oxygenation does not stimulate experimental tumour growth. In: Proceedings from the XVIth EUBS meeting, Amsterdam, 1990;121–129
Headley DB, et al. The effect of hyperbaric oxygen on growth of human squamous cell carcinoma xenografts. Arch Otolaryngol Head Neck Surg 1991;117:1269–1272
PubMedÂ
CASÂ
Google ScholarÂ
Sklizovic D, et al. Hyperbaric oxygen therapy and squamous cell carcinoma cell line growth. Head Neck 1993;15:236–240
PubMedÂ
CASÂ
Google ScholarÂ
McDonald KR, et al. Effect of hyperbaric oxygenation on existing oral mucosal carcinoma. Laryngoscope 1996;106:957–959
PubMedÂ
CASÂ
Google ScholarÂ
Shi Y, et al. Effects of hyperbaric oxygen exposure on experimental head and neck tumor growth, oxygenation, and vasculature. Head Neck 2005;27:362–369
PubMedÂ
Google ScholarÂ
Johnson RJ, et al. Sequential study on the effect of the addition of hyperbaric oxygen on the 5 year survival rates of carcinoma of the cervix treated with conventional fractional irradiations. Am J Roentgenol Radium Ther Nucl Med 1974;120:111–117
PubMedÂ
CASÂ
Google ScholarÂ
Bennett MB, Sealy R, Hockly J. The treatment of stage III squamous cell carcinoma of the cervix in air and in hyperbaric oxygen. In: Smith G, editor, Proceedings of the Sixth International Congress on Hyperbaric Oxygen. Aberdeen, Scotland, University press, 1977;247–252
Google ScholarÂ
Henk JM, et al. Radiotherapy and hyperbaric oxygen in head and neck cancer: interim report of second clinical trial. Lancet 1977;2:104–105
PubMedÂ
CASÂ
Google ScholarÂ
Watson ER, et al. Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the cervix. Br J Radiol 1978;51:879–887
PubMedÂ
CASÂ
Google ScholarÂ
Brady LW, et al. Hyperbaric oxygen therapy for carcinoma of the cervix—stages IIB, IIIA, IIIB and IVA: results of a randomized study by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 1981;7:991–998
PubMedÂ
CASÂ
Google ScholarÂ
Granstrom G. Tumor recurrence and development of new head and neck cancers after HDO2—treatment a prospective clinical study. In: Proceedings: International Joint Meeting on Hyperbaric and Underwater Medicine, Milan, 1996;47–60
Dische S, et al. Carcinoma of the cervix and the use of hyperbaric oxygen with radiotherapy: a report of a randomised controlled trial. Radiother Oncol 1999;53:93–98
PubMedÂ
CASÂ
Google ScholarÂ
Haffty BG, et al. Radiation therapy with hyperbaric oxygen at 4 atmospheres pressure in the management of squamous cell carcinoma of the head and neck: results of a randomized clinical trial: carcinoma of the larynx treated with hypofractionated radiation and hyperbaric oxygen: long-term tumor control and complications. Cancer J Sci Am 1999;5:341–347
PubMedÂ
CASÂ
Google ScholarÂ
Haffty BG, et al. Carcinoma of the larynx treated with hypofractionated radiation and hyperbaric oxygen: long-term tumor control and complications. Int J Radiat Oncol Biol Phys 1999;45:13–20
PubMedÂ
CASÂ
Google ScholarÂ
Kohshi K, et al. Effects of radiotherapy after hyperbaric oxygenation on malignant gliomas. Br J Cancer 1999;80:236–241
PubMedÂ
Google ScholarÂ
Feldmeier JJ, et al. Hyperbaric oxygen an adjunctive treatment for delayed radiation injuries of the abdomen and pelvis. Undersea Hyperb Med 1996;23:205–213
PubMedÂ
CASÂ
Google ScholarÂ
Horsman M, et al. The Oxygen Effect: Basic Clinical Radiobiology, 2nd edition. London, Arnold, 1997
Google ScholarÂ
Overgaard J, et al. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 1996;6:10–21
PubMedÂ
Google ScholarÂ
Lartigau E, at al. Hyperbaric oxygen in the treatment of radio-induced lesions in normal tissues. Presented to the European Society for Therapuetic Radiology and Oncology and European Committee for Hyperbaric Medicine, Lisbon, 2001
Kalns J, et al. The effect of hyperbaric oxygen on growth and chemosensitivity of metastatic prostate cancer. Anticancer Res 1998;18:363–367
PubMedÂ
CASÂ
Google ScholarÂ
Stuhr LE, et al. Hyperbaric oxygen alone or combined with 5-FU attenuates growth of DMBA-induced rat mammary tumors. Cancer Lett 2004;210:35–40
PubMedÂ
CASÂ
Google ScholarÂ
Narkowicz CK, et al. Hyperbaric oxygen therapy increases free radical levels in the blood of humans. Free Radic Res Commun 1993;19:71–80
PubMedÂ
CASÂ
Google ScholarÂ
Dennog C, et al. Analysis of oxidative DNA damage and HPRT mutations in humans after hyperbaric oxygen treatment. Mutat Res 1999;431:351–359
PubMedÂ
CASÂ
Google ScholarÂ
Kalns JE, et al. Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cell Dev Biol Anim 1999;35:98–101
PubMedÂ
CASÂ
Google ScholarÂ
Teas J, et al. Can hyperbaric oxygen therapy reduce breast cancer treatment-related lymphedema? A pilot study. J Womens Health (Larchmt) 2004;13:1008–1018
ArticleÂ
Google ScholarÂ
Yarnold J. Phase II randomized study of hyperbaric oxygen therapy versus standard management in women with chronic arm lymphedema after radiotherapy for early breast cancer. Clinical trial in progress, UK, 2004
Maier A, et al. Does hyperbaric oxygen enhance the effect of photodynamic therapy in patients with advanced esophageal carcinoma? A clinical pilot study. Endoscopy 2000;32:42–48
PubMedÂ
CASÂ
Google ScholarÂ
Tomaselli, et al. Acute effects of combined photodynamic therapy and hyperbaric oxygenation in lung cancer—a clinical pilot study. Lasers Surg Med 2001;28:399–403