Skip to main content

Advertisement

Log in

Insulin-like Growth Factors (IGF) I and II Utilize Different Calcium Signaling Pathways in a Primary Human Parathyroid Cell Culture Model

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2006

Abstract

Background

In most cell types, influx of calcium (Ca2+) induces a growth or secretory response. The opposite occurs in parathyroid (PTH), cells where there is an inverse relationship between intracellular Ca2+ concentration and PTH secretion. We have examined the effects of calcium channel and metabolism modulators on insulin-like growth factors (IGFs) in a parathyroid cell culture model.

Methods

Cell cultures were prepared from 9 patients undergoing operation for hyperparathyroidism. Following adhesion, the cells were transferred to serum-free medium and dosed with IGF I, II ± ethyleneglycol-bis(β-aminoethyl)-N, N, N′,N′-tetraacetic acid (EGTA), nifedipine, nickel, 2-aminoethoxy-diphenylborate (2-APB), or dantrolene. Proliferation (96 hours) was assessed by measuring tritiated thymidine incorporation and PTH release (1 and 3 hours) assayed by IRMA.

Results

Both IGF I and II increased DNA synthesis to 162.8% ± 10.6% (SEM) and 131.1% ± 7.7%, respectively (P < 0.05). EGTA at 0.2 mmol (ionized Ca2+ 0.2mmol) did not affect the response to both IGFs. EGTA at 2 mmol (ionized Ca2+ 0 mmol) reduced the DNA synthesis of IGF I and II to 29% and 26%, respectively (P < 0.05). Nifedipine and nickel (nonspecific Ca2+ channel blocker) were equally potent in negating the mitogenic effects of both IGFs. 2-APB (IP3R blocker) reduced the basal DNA synthesis to 51.3% ± 8.4% but had no effect on either IGF. Dantrolene (ryanodine receptor blocker) negated IGF II induced mitogenisis (74.2% ± 6.7%) and partially inhibited IGF I mitogenesis (123% ± 6%) (P < 0.05). The rate of PTH secretion was greater after IGF II stimulation than after IGF I stimulation.

Conclusions

IGFs I and II induce mitogenesis by different calcium signaling pathways. These data suggest that parathyroid cells may utilize different calcium signaling pathways to distinguish growth factors and serum calcium changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berridge MJ, Lipp P, Bootman MD. The versatility, universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11–21

    Article  CAS  PubMed  Google Scholar 

  2. Flynn ER, Bradley KN, Muir TC, et al. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem 2001;276:36411–36418

    Article  CAS  PubMed  Google Scholar 

  3. Kremer R, Bolivar I, Goltzman D, et al. Influence of calcium and 1,25–dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells. Endocrinology 1989;125:935–941

    Article  CAS  PubMed  Google Scholar 

  4. Kojima I, Matsunaga H, Kurokawa K, et al. Calcium influx: an intracellular message of the mitogenic action of insulin-like growth factor-I. J Biol Chem 1988;263:16561–16567

    CAS  PubMed  Google Scholar 

  5. Furuya Y, Lundmo P, Short AD, et al. The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res 1994;54:6167–6175

    CAS  PubMed  Google Scholar 

  6. Cohen J, Gierlowski TC,Schneider AB. A prospective study of hyperparathyroidism in individuals exposed to radiation in childhood. JAMA 1990;264:581–584

    Article  CAS  PubMed  Google Scholar 

  7. Pocotte SL, Ehrenstein G, Fitzpatrick LA. Role of calcium channels in parathyroid hormone secretion. Bone 1995;16:365S–372S

    CAS  PubMed  Google Scholar 

  8. Brown AJ, Ritter C, Slatopolsky E, et al. 1Alpha,25-dihydroxy-3-epi-vitamin D3, a natural metabolite of 1alpha,25-dihydroxyvitamin D3, is a potent suppressor of parathyroid hormone secretion. J Cell Biochem 1999;73:106–113

    Article  CAS  PubMed  Google Scholar 

  9. Brown EM, Hebert SC. Calcium-receptor-regulated parathyroid and renal function. Bone 1997;20:303–309

    Article  CAS  PubMed  Google Scholar 

  10. Malaisse WJ. Calcium entry and activation of endocrine cells. Ann N Y Acad Sci 1988;522:284–295

    CAS  PubMed  Google Scholar 

  11. Leof EB. Growth factor receptor signalling: location, location, location. Trends Cell Biol 2000;10:343–348

    Article  CAS  PubMed  Google Scholar 

  12. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993;361:315–325

    Article  CAS  PubMed  Google Scholar 

  13. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984;312:315–321

    Article  CAS  PubMed  Google Scholar 

  14. Nahorski SR. Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci 1988;11:444–448

    Article  CAS  PubMed  Google Scholar 

  15. Mikoshiba K,Hattori M. IP3 receptor-operated calcium entry. Sci STKE 2000;2000:PE1

    CAS  PubMed  Google Scholar 

  16. Kanzaki M, Nie L, Shibata H, et al. Activation of a calcium-permeable cation channel CD20 expressed in Balb/c 3T3 cells by insulin-like growth factor-I. J Biol Chem 1997;272:4964–4969

    Article  CAS  PubMed  Google Scholar 

  17. Kanzaki M, Zhang YQ, Mashima H, et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1999;1:165–170

    Article  CAS  PubMed  Google Scholar 

  18. Kojima I, Mogami H,Ogata E. Oscillation of cytoplasmic free calcium concentration induced by insulin-like growth factor I. Am J Physiol 1992;262:E307–E311

    CAS  PubMed  Google Scholar 

  19. Kojima I, Nishimoto I, Iiri T, et al. Evidence that type II insulin-like growth factor receptor is coupled to calcium gating system. Biochem Biophys Res Commun 1988;154:9–19

    Article  CAS  PubMed  Google Scholar 

  20. Wang ZM, Messi ML, Renganathan M, et al. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression. J Physiol 1999;516 ( Pt 2):331–341

    CAS  PubMed  Google Scholar 

  21. Poiraudeau S, Lieberherr M, Kergosie N, et al. Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein. J Cell Biochem 1997;64:414–422

    Article  CAS  PubMed  Google Scholar 

  22. Nishimoto I, Murayama Y, Katada T, et al. Possible direct linkage of insulin-like growth factor-II receptor with guanine nucleotide-binding proteins. J Biol Chem 1989;264:14029–14038

    CAS  PubMed  Google Scholar 

  23. Takasu N, Takasu M, Komiya I, et al. Insulin-like growth factor I stimulates inositol phosphate accumulation, a rise in cytoplasmic free calcium, and proliferation in cultured porcine thyroid cells. J Biol Chem 1989;264:18485–18488

    CAS  PubMed  Google Scholar 

  24. Solem ML, Thomas AP. Modulation of cardiac Ca2+ channels by IGF1. Biochem Biophys Res Commun 1998;252:151–155

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka R, Tsushima T, Murakami H, et al. Insulin-like growth factor I receptors and insulin-like growth factor-binding proteins in human parathyroid tumors. World J Surg 1994;18:635–641; discussion 641–632

    Article  CAS  PubMed  Google Scholar 

  26. Sadler GP, Jones DL, Woodhead JS, et al. Effect of growth factors on growth of bovine parathyroid cells in serum-free medium. World J Surg 1996;20:822–828; discussion 828–829

    Article  CAS  PubMed  Google Scholar 

  27. Wong C, Lai T, Hilly JM, et al. Selective estrogen receptor modulators inhibit the effects of insulin-like growth factors in hyperparathyroidism. Surgery 2002;132:998–1006; discussion 1006–1007

    Article  PubMed  Google Scholar 

  28. Corbetta S, Mantovani G, Lania A, et al. Calcium-sensing receptor expression and signalling in human parathyroid adenomas and primary hyperplasia. Clin Endocrinol (Oxf) 2000;52:339–348

    Article  CAS  Google Scholar 

  29. Yano S, Sugimoto T, Tsukamoto T, et al. Association of decreased calcium-sensing receptor expression with proliferation of parathyroid cells in secondary hyperparathyroidism. Kidney Int 2000;58:1980–1986

    Article  CAS  PubMed  Google Scholar 

  30. Brownlee C. Cellular calcium imaging: so, what’s new? Trends Cell Biol 2000;10:451–457

    Article  CAS  PubMed  Google Scholar 

  31. Campbell KP, Leung AT, Sharp AH. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 1988;11:425–430

    Article  CAS  PubMed  Google Scholar 

  32. Tsien RW, Lipscombe D, Madison DV, et al. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 1988;11:431–438

    Article  CAS  PubMed  Google Scholar 

  33. Yellen G. Calcium channels. Structure and selectivity. Nature 1993;366:109–110

    Article  CAS  PubMed  Google Scholar 

  34. Gregory RB, Rychkov G, Barritt GJ. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 2001;354:285–290

    Article  CAS  PubMed  Google Scholar 

  35. Hotchkiss RS, Karl IE. Dantrolene ameliorates the metabolic hallmarks of sepsis in rats and improves survival in a mouse model of endotoxemia. Proc Natl Acad Sci USA 1994;91:3039–3043

    CAS  PubMed  Google Scholar 

  36. Furukawa T, Yamakawa T, Midera T, et al. Selectivities of dihydropyridine derivatives in blocking Ca(2+) channel subtypes expressed in Xenopus oocytes. J Pharmacol Exp Ther 1999;291:464–473

    CAS  PubMed  Google Scholar 

  37. Lee JH, Gomora JC, Cribbs LL, et al. Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys J 1999;77:3034–3042

    CAS  PubMed  Google Scholar 

  38. Zamponi GW, Bourinet E, Snutch TP. Nickel block of a family of neuronal calcium channels: subtype- and subunit-dependent action at multiple sites. J Membr Biol 1996;151:77–90

    Article  CAS  PubMed  Google Scholar 

  39. Kifor O, MacLeod RJ, Diaz R, et al. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol 2001;280:F291–F302

    CAS  PubMed  Google Scholar 

  40. Brown EM. Physiology and pathophysiology of the extracellular calcium-sensing receptor. Am J Med 1999;106:238–253

    Article  CAS  PubMed  Google Scholar 

  41. Shoback DM, Thatcher J, Leombruno R, et al. Relationship between parathyroid hormone secretion and cytosolic calcium concentration in dispersed bovine parathyroid cells. Proc Natl Acad Sci USA 1984;81:3113–3117

    CAS  PubMed  Google Scholar 

  42. Shoback D, Chen TH, Pratt S, et al. Thapsigargin stimulates intracellular calcium mobilization and inhibits parathyroid hormone release. J Bone Miner Res 1995;10:743–750

    Article  CAS  PubMed  Google Scholar 

  43. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989;51:367–384

    Article  CAS  PubMed  Google Scholar 

  44. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci 1990;13:337–356

    Article  CAS  PubMed  Google Scholar 

  45. Chang W, Pratt SA, Chen TH, et al. Parathyroid cells express dihydropyridine-sensitive cation currents and L-type calcium channel subunits. Am J Physiol Endocrinol Metab 2001;281:E180–E189

    CAS  PubMed  Google Scholar 

  46. Fitzpatrick LA, Yasumoto T, Aurbach GD. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator. Endocrinology 1989;124:97–103

    CAS  PubMed  Google Scholar 

  47. Hobai IA, Hancox JC, Levi AJ. Inhibition by nickel of the L-type Ca channel in guinea pig ventricular myocytes and effect of internal cAMP. Am J Physiol Heart Circ Physiol 2000;279:H692–H701

    CAS  PubMed  Google Scholar 

  48. Jones KT, Sharpe GR. Ni2+ blocks the Ca2+ influx in human keratinocytes following a rise in extracellular Ca2+. Exp Cell Res 1994;212:409–413

    Article  PubMed  Google Scholar 

  49. Lacinova L, Klugbauer N, Hofmann F. Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. Neuropharmacology 2000;39:1254–1266

    Article  CAS  PubMed  Google Scholar 

  50. Silva AM, Rosario LM, Santos RM. Background Ca2+ influx mediated by a dihydropyridine- and voltage-insensitive channel in pancreatic beta-cells. Modulation by Ni2+, diphenylamine-2-carboxylate, and glucose metabolism. J Biol Chem 1994;269:17095–17103

    CAS  PubMed  Google Scholar 

  51. Chang W, Chen TH, Gardner P, et al. Regulation of Ca(2+)-conducting currents in parathyroid cells by extracellular Ca(2+) and channel blockers. Am J Physiol 1995;269:E864–E877

    CAS  PubMed  Google Scholar 

  52. Larsson R, Akerstrom G, Gylfe E, et al. Paradoxical effects of K+ and D-600 on parathyroid hormone secretion and cytoplasmic Ca2+ in normal bovine and pathological human parathyroid cells. Biochim Biophys Acta 1985;847:263–269

    Article  CAS  PubMed  Google Scholar 

  53. Lee HC. Multiple calcium stores: separate but interacting. Sci STKE. 2000;2000:PE1

    Article  CAS  Google Scholar 

  54. Skryma R, Mariot P, Bourhis XL, et al. Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis. J Physiol 2000;527 Pt 1:71–83

    Article  Google Scholar 

  55. Charlesworth A, Rozengurt E. Thapsigargin and di-tert-butylhydroquinone induce synergistic stimulation of DNA synthesis with phorbol ester and bombesin in Swiss 3T3 cells. J Biol Chem 1994;269:32528–32535

    CAS  PubMed  Google Scholar 

  56. Egea J, Espinet C, Comella JX. Calcium influx activates extracellular-regulated kinase/mitogen-activated protein kinase pathway through a calmodulin-sensitive mechanism in PC12 cells. J Biol Chem 1999;274:75–85

    Article  CAS  PubMed  Google Scholar 

  57. Zhu DM, Tekle E, Huang CY, et al. Inositol tetrakisphosphate as a frequency regulator in calcium oscillations in HeLa cells. J Biol Chem 2000;275:6063–6066

    Article  CAS  PubMed  Google Scholar 

  58. Pocotte SL, Ehrenstein G, Fitzpatrick LA. Regulation of parathyroid hormone secretion. Endocr. Rev. 1991;12:291–301

    Article  CAS  PubMed  Google Scholar 

  59. Brown EM, Pollak M, Hebert SC. Sensing of extracellular Ca2+ by parathyroid and kidney cells: cloning and characterization of an extracellular Ca(2+)-sensing receptor. Am J Kidney Dis 1995;25:506–513

    CAS  PubMed  Google Scholar 

  60. Chattopadhyay N, Mithal A, Brown EM. The calcium-sensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocrinol Rev 1996;17:289–307

    Article  CAS  Google Scholar 

  61. Ho C, Conner DA, Pollak MR, et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995;11:389–394

    Article  CAS  PubMed  Google Scholar 

  62. Fill M, Coronado R. Ryanodine receptor channel of sarcoplasmic reticulum. Trends Neurosci 1988;11:453–457

    Article  CAS  PubMed  Google Scholar 

  63. Meldolesi J, Volpe P, Pozzan T. The intracellular distribution of calcium. Trends Neurosci 1988;11:449–452

    Article  CAS  PubMed  Google Scholar 

  64. Cohen Y, Rahamimov R, Naveh-Many T, et al. Where is the “inverting factor” in hormone secretion from parathyroid cells? Am J Physiol 1997;273:E631–E637

    CAS  PubMed  Google Scholar 

  65. Chang JM, Hwang SJ, Tsai JC, et al. In vivo effect of endothelin-1 on plasma calcium and parathyroid hormone concentrations. J Endocrinol 2000;165:179–184

    Article  CAS  PubMed  Google Scholar 

  66. Tanini A, Failli P, Maggi M, et al. Effects of endothelin-1 on bovine parathyroid cells. Biochem Biophys Res Commun 1993;193:59–66

    Article  CAS  PubMed  Google Scholar 

  67. Larsson C. Dissecting the genetics of hyperparathyroidism—new clues from an old friend. J Clin Endocrinol Metab 2000;85:1752–1754

    Article  CAS  PubMed  Google Scholar 

  68. Muff R, Nemeth EF, Haller-Brem S, et al. Regulation of hormone secretion and cytosolic Ca2+ by extracellular Ca2+ in parathyroid cells and C-cells: role of voltage-sensitive Ca2+ channels. Arch Biochem Biophys 1988;265:128–135

    Article  CAS  PubMed  Google Scholar 

  69. Frodin M, Sekine N, Roche E, et al. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem. 1995;270:7882–7889

    Article  CAS  PubMed  Google Scholar 

  70. Hughes SJ, Chalk JG, Ashcroft SJ. Effect of secretagogues on cytosolic free Ca2+ and insulin release at different extracellular Ca2+ concentrations in the hamster clonal beta-cell line HIT-T15. Mol Cell Endocrinol 1989;65:35–41

    Article  CAS  PubMed  Google Scholar 

  71. Jimenez N, Hernandez-Cruz A. Modifications of intracellular Ca2+ signalling during nerve growth factor-induced neuronal differentiation of rat adrenal chromaffin cells. Eur J Neurosci 2001;13:1487–1500

    Article  CAS  PubMed  Google Scholar 

  72. Meyer zu Heringdorf D, Lass H, Kuchar I, et al. Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. FEBS Lett 1999;461:217–222

    Article  CAS  PubMed  Google Scholar 

  73. Legrand G, Humez S, Slomianny C, et al. Ca2+ pools and cell growth. Evidence for sarcoendoplasmic Ca2+-ATPases 2B involvement in human prostate cancer cell growth control. J Biol Chem 2001;276:47608–47614

    Article  CAS  PubMed  Google Scholar 

  74. Garrouste FL, Remacle-Bonnet MM, Lehmann MM, et al. Up-regulation of insulin/insulin-like growth factor-I hybrid receptors during differentiation of HT29-D4 human colonic carcinoma cells. Endocrinology 1997;138:2021–2032

    Article  CAS  PubMed  Google Scholar 

  75. Frasca F, Pandini G, Scalia P, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999;19:3278–3288

    CAS  PubMed  Google Scholar 

  76. Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 1997;189:33–48

    Article  CAS  PubMed  Google Scholar 

  77. Korc M, Williams JA, Goldfine ID. Stimulation of the glucose transport system in isolated mouse pancreatic acini by cholecystokinin and analogues. J Biol Chem 1979;254:7624–7629

    CAS  PubMed  Google Scholar 

  78. Hansen BF, Danielsen GM, Drejer K, et al. Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem J 1996;315 (Pt 1):271–279

    CAS  PubMed  Google Scholar 

  79. Shymko RM, Dumont E, De Meyts P, et al. Timing-dependence of insulin-receptor mitogenic versus metabolic signalling: a plausible model based on coincidence of hormone and effector binding. Biochem J 1999;339 ( Pt 3):675–683

    Article  CAS  PubMed  Google Scholar 

  80. Giguere V, Tremblay A,Tremblay GB. Estrogen receptor beta: re-evaluation of estrogen and antiestrogen signaling. Steroids 1998;63:335–339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. M. Wong PhD.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00268-006-0264-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, C.K.M., Lai, T., Holly, J.M.P. et al. Insulin-like Growth Factors (IGF) I and II Utilize Different Calcium Signaling Pathways in a Primary Human Parathyroid Cell Culture Model. World J. Surg. 30, 333–345 (2006). https://doi.org/10.1007/s00268-005-0339-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-005-0339-8

Keywords

Navigation