Skip to main content

Advertisement

Log in

New Prognostic Scales LAST-1 and LAST-2: Supporting Prediction and Staging of Thyroid Cancer

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Introduction

Epidemiologically, thyroid gland tumors are lesions of the highest importance among endocrine tumors in humans. Although the results of surgical treatment of the highly differentiated (follicular and papillary) tumors seem to be satisfactory, treatment of the poorly differentiated (medullary and anaplastic) tumor still demands clinical and basic investigations. In this study the authors sought to evaluate clinical and molecular factors that could contribute to preoperative detection of more advanced thyroid cancers (i.e., those that exhibit extrathyroid spread and lymph node invasion).

Methods

A total of 27 patients operated on for thyroid cancer were evaluated according to age, sex, time from the onset of the disease, cytogenetic changes, and loss of heterozygosity (LOH) in 14 microsatellite markers. The output variables were defined according to postoperative findings and the TNM 2002 score. The T1-2 N0 M0 cases were defined as local malignancy (LM); and T3-4 any N any M, any T N1 any M, or any T any N M1 were considered advanced malignancy (AM). The control groups consisted of 25 patients with multinodular goiter (MNG) and 32 patients with follicular adenoma (FA). In all cases, clinical and molecular data similar to those listed above were collected, excluding staging and follow-up information.

Results

There was no predominant specific type of chromosomal aberration observed and no marker lost in more than five patients (18%). The logistic regression identified three input variables as contributing significantly to the dichotomized outcome measure (LM vs. AM): LOH in any of the examined loci, age of the patient at the presentation, and the sex of the patient. Furthermore, discriminant analysis revealed four input variables differentiating among TC, FA, and MNG patients. Based on the multivariate analysis results, two numeric prognostic scales were fashioned: LAST-1, a scale applicable to differentiation of thyroid cancers at different degrees of clinical advancement; and LAST-2, a scale applicable to differentiation of any thyroid lumps.

Conclusions

It was concluded that LOH and the age and sex of the patients can provide sufficient data to predict thyroid cancer with a high degree of clinical advancement. LAST-1 scale is a reliable tool for identifying these patients. The LAST-2 scale gives supportive information about the character of thyroid lumps, distinguishing TC from MNG and FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pacini F, De Groot LJ. Thyroid neoplasia. http://www.thyroidmanager.org, 2004

  2. Voutilainen PE, Multanen MM, Leppaniemi AK, et al. Prognosis after lymph node recurrence in papillary thyroid carcinoma depends on age. Thyroid 2001;11:953–957

    Article  CAS  PubMed  Google Scholar 

  3. Antonini P, Venuat AM, Lineares G, et al. Cytogenetic abnormalities in thyroid adenomas. Cancer Genet Cytogenet 1991;52:157–164

    CAS  PubMed  Google Scholar 

  4. Gertner ME, Kebebew E. Multiple endocrine neoplasia type 2. Curr Treat Options Oncol 2004;5:315–325

    PubMed  Google Scholar 

  5. Bornstein-Quevedo L, Garcia-Hernandez ML, Camacho-Arroyo I, et al. Telomerase activity in well-differentiated papillary thyroid carcinoma correlates with advanced clinical stage of the disease. Endocr Pathol 2003;14:213–219

    Article  CAS  PubMed  Google Scholar 

  6. Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003;63:1454–1457

    CAS  PubMed  Google Scholar 

  7. Lacroix L, Mian C, Barrier T, et al. PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues. Eur J Endocrinol 2004;151:367–374

    Article  CAS  PubMed  Google Scholar 

  8. Anwar F, Emond MJ, Schmidt RA, et al. Retinoblastoma expression in thyroid neoplasms. Mod Pathol 2000;13:562–569

    CAS  PubMed  Google Scholar 

  9. Granja F, Morari J, Morari EC, et al. Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Cancer Lett 2004;210:151–157

    Article  CAS  PubMed  Google Scholar 

  10. Boltze C, Zack S, Quednow C, et al. Hypermethylation of the CDKN2/p16INK4A promotor in thyroid carcinogenesis. Pathol Res Pract 2003;199:399–404

    CAS  PubMed  Google Scholar 

  11. Putzer BM, Drosten M. The RET proto-oncogene: a potential target for molecular cancer therapy. Trends Mol Med 2004;10:351–357

    Article  CAS  PubMed  Google Scholar 

  12. Tallini G. Molecular pathobiology of thyroid neoplasms. Endocr Pathol 2002;13:271–288

    Article  CAS  PubMed  Google Scholar 

  13. Inaba M, Sato H, Abe Y, et al. Expression and significance of c-met protein in papillary thyroid carcinoma. Tokai J Exp Clin Med 2002;27:43–49

    CAS  PubMed  Google Scholar 

  14. Wang DG, Liu WH, Johnston CF, et al. Bcl-2 and c-Myc, but not bax and p53, are expressed during human medullary thyroid tumorigenesis. Am J Pathol 1998;152:1407–1413

    CAS  PubMed  Google Scholar 

  15. Kataki A, Sotirianakos S, Memos N, et al. P53 and C-FOS overexpression in patients with thyroid cancer: an immunohistochemical study. Neoplasma 2003;50:26–30

    CAS  PubMed  Google Scholar 

  16. Hunt JL, Yim JH, Tometsko M, et al. Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors. Surgery 2003;134:1043–1047

    Article  PubMed  Google Scholar 

  17. Jeanpierre M, Junien C. DNA analysis as clinical investigation: when and how? Ann Genet 1984;27:134–147

    CAS  PubMed  Google Scholar 

  18. Slebos RJ, Umbach DM, Sommer CA, et al. Analytical and statistical methods to evaluate microsatellite allelic imbalance in small amounts of DNA. Lab Invest 2004;84:649–657

    Article  CAS  PubMed  Google Scholar 

  19. Sperling K, Wiesner R. A rapid banding technique for routine use in human and comparative cytogenetics. Humangenetik 1972;15:349–353

    CAS  PubMed  Google Scholar 

  20. Mitelman F. An International System for Cytogenetic Nomenclature. Basel, Karger, 1995

  21. Cady B, Rossi R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 1988;104:947–953

    CAS  PubMed  Google Scholar 

  22. Van Nguyen K, Dilawari RA. Predictive value of AMES scoring system in selection of exent of surgery in well differentiated carcinoma of thyroid. Am J Surg 1995;61:151–155

    Google Scholar 

  23. Hay ID, Thompson GB, Grant CS, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively managed patients. World J Surg 2002;26:879–885

    Article  PubMed  Google Scholar 

  24. Byar DP, Green SB, Dor P, et al. Prognostic index for thyroid carcinoma: study of the EORTC thyroid cancer cooperative group. Eur J Cancer 1979;15:1033–1041

    CAS  PubMed  Google Scholar 

  25. Goldgar DE, Easton DF, Cannon-Albright LA, et al. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 1994;86:1600–1608

    CAS  PubMed  Google Scholar 

  26. Fagin JA. Thyroid Cancer. Norwell, MA, Kluwer, pp 59–84

  27. Huang Y, Prasad M, Lemon WJ, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci USA 2001;98:15044–15049

    CAS  PubMed  Google Scholar 

  28. Links TP, van Tol KM, Meerman GJ, et al. Differentiated thyroid carcinoma: a polygenic disease. Thyroid 2001;11:1135–1140

    Article  CAS  PubMed  Google Scholar 

  29. Rodrigues RF, Roque L, Rosa-Santos J, et al. Chromosomal imbalances associated with anaplastic transformation of follicular thyroid carcinomas. Br J Cancer 2004;90:492–496

    Article  CAS  PubMed  Google Scholar 

  30. Ito Y, Yoshida H, Tomoda C, et al. Decreased expression of p107 is correlated with anaplastic transformation in papillary carcinoma of the thyroid. Anticancer Res 2003;23:3819–3824

    CAS  PubMed  Google Scholar 

  31. Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 2004;15:319–327

    Article  CAS  PubMed  Google Scholar 

  32. Burzykowski T, Chmielarczyk W. Predicted and observed thyroid cancer incidence in Poland after year 1986. Wiad Lek 2004;57:306–310

    PubMed  Google Scholar 

  33. Haigh PI, Urbach DR, Rotstein LE. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann Surg Oncol 2005;12:81–89

    Article  PubMed  Google Scholar 

  34. Clark JR, Lai P, Hall F, et al. Variables predicting distant metastases in thyroid cancer. Laryngoscope 2005;115:661–667

    Article  PubMed  Google Scholar 

  35. Zedenius J, Wallin G, Svensson A, et al. Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet 1996;97:299–303

    Article  CAS  PubMed  Google Scholar 

  36. Cerutti JM, Delcelo R, Amadei MJ, et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest 2004;113:1234–1242

    Article  CAS  PubMed  Google Scholar 

  37. Rosai J. Immunohistochemical markers of thyroid tumors: significance and diagnostic applications. Tumori 2003;89:517–519

    PubMed  Google Scholar 

  38. Sheikh HA, Tometsko M, Niehouse L, et al. Molecular genotyping of medullary thyroid carcinoma can predict tumor recurrence. Am J Surg Pathol 2004;28:101–106

    PubMed  Google Scholar 

  39. Hunt JL, Yim JH, Tometsko M, et al. Loss of heterozygosity of the VHL gene identifies malignancy and predicts death in follicular thyroid tumors. Surgery 2003;134:1043–1047

    Article  PubMed  Google Scholar 

  40. Passler C, Prager G, Scheuba C, et al. Application of staging systems for differentiated thyroid carcinoma in an endemic goiter region with iodine substitution. Ann Surg 2003;237:227–234

    Article  PubMed  Google Scholar 

  41. Rodriguez-Cuevas S, Labastida-Almendaro S, Cortes-Arroyo H, et al. Multifactorial analysis of survival and recurrences in differentiated thyroid cancer: comparative evaluation of usefulness of AGES, MACIS, and risk group scores in Mexican population. J Exp Clin Cancer Res 2002;21:79–86

    CAS  PubMed  Google Scholar 

  42. Hadjieva T. Scoring patients’ risk in differentiated thyroid cancer. Onkologie 2001;24:561–568

    Article  CAS  PubMed  Google Scholar 

  43. Khalid A, Pal R, Sasatomi E, et al. Use of microsatellite marker loss of heterozygosity in accurate diagnosis of pancreaticobiliary malignancy from brush cytology samples. Gut 2004;53:1860–1865

    Article  CAS  PubMed  Google Scholar 

  44. Ward LS, Brenta G, Medvedovic M, et al. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J Clin Endocrinol Metab 1998;83:525–530

    Article  CAS  PubMed  Google Scholar 

  45. Oriola J, Halperin I, Mallofre C, et al. Screening of selected genomic areas potentially involved in thyroid neoplasms. Eur J Cancer 2001;37:2470–2474

    Article  CAS  PubMed  Google Scholar 

  46. Grebe SK, McIver B, Hay ID, et al. Frequent loss of heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations suggests involvement of unidentified tumor suppressor genes in follicular thyroid carcinoma. J Clin Endocrinol Metab 1997;82:3684–3691

    CAS  PubMed  Google Scholar 

  47. Trovato M, Fraggetta F, Villari D, et al. Loss of heterozygosity of the long arm of chromosome 7 in follicular and anaplastic thyroid cancer, but not in papillary thyroid cancer. J Clin Endocrinol Metab 1999;84:3235–3240

    CAS  PubMed  Google Scholar 

  48. Kitamura Y, Shimizu K, Ito K, et al. Allelotyping of follicular losses in chromosome arms 7q, 11p and 22q. J Clin Endocrinol Metab 2001;86:4268–4272

    Article  CAS  PubMed  Google Scholar 

  49. Zedenius J, Wallin G, Svensson A, et al. Deletions of the long arm of chromosome 10 in progression of follicular thyroid tumors. Hum Genet 1996;97:299–303

    Article  CAS  PubMed  Google Scholar 

  50. Yeh JJ, Marsh DJ, Zedenius J, et al. Fine-structure deletion mapping of 10q22-24 identifies regions of loss of heterozygosity and suggests that sporadic follicular thyroid adenomas and follicular thyroid carcinomas develop along distinct neoplastic pathways. Genes Chromosome Cancer 1999;26:322–328

    CAS  Google Scholar 

  51. Sobin LH, Wittekind C, editors. TNM Classification of Malignant Tumors, 6th edition. New York: Wiley-Liss, 2002:52–56

    Google Scholar 

  52. Witt RL, McNamara AM. Prognostic factors in mortality and morbidity in patients with differentiated thyroid cancer. Ear Nose Throat J 2002;81:856–863

    PubMed  Google Scholar 

  53. Alzahrani AS, Al Mandil M, Chaudhary MA, et al. Frequency and predictive factors of malignancy in residual thyroid tissue and cervical lymph nodes after partial thyroidectomy for differentiated thyroid cancer. Surgery 2002;131:443–449

    Article  PubMed  Google Scholar 

  54. Shaha AR. Implications of prognostic factors and risk groups in the management of differentiated thyroid cancer. Laryngoscope 2004;114:393–402

    PubMed  Google Scholar 

  55. D’Avanzo A, Treseler P, Ituarte PH, et al. Follicular thyroid carcinoma: histology and prognosis. Cancer 2004;100: 1123–1129

    PubMed  Google Scholar 

  56. Rios A, Rodriguez JM, Canteras M, et al. Risk factors for malignancy in multinodular goitres. Eur J Surg Oncol 2004;30:58–62

    CAS  PubMed  Google Scholar 

  57. Eichhorn W, Tabler H, Lippold R, et al. Prognostic factors determining long-term survival in well-differentiated thyroid cancer: an analysis of four hundred eighty-four patients undergoing therapy and aftercare at the same institution. Thyroid 2003;13:949–958

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Prof. Janusz Limon and his team for performing the LOH and cytogenetic analyses. The study was supported by a KBN (Polish Scientific Committee) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej J. Lachinski MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachinski, A.J., Stefaniak, T., Kobiela, J. et al. New Prognostic Scales LAST-1 and LAST-2: Supporting Prediction and Staging of Thyroid Cancer. World J. Surg. 30, 309–320 (2006). https://doi.org/10.1007/s00268-005-0277-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-005-0277-5

Keywords

Navigation