Skip to main content

Advertisement

Log in

Technical performance: Relation between surgical dexterity and technical knowledge

  • Original Scientific Reports
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Technical performance consists of surgical knowledge, judgment, and dexterity. Although assessment of surgical dexterity is now possible, assessing technical knowledge and its relation to dexterity has not been elucidated. Surgeons of varying experience were recruited to the skills laboratory to undertake three assessments: simple surgical dexterity (at 14 stations scored by motion analysis), an operating room equipment examination, and a novel error analysis. The scores were correlated, and p < 0.05 was deemed to be significant. Thirty surgeons were recruited; and construct validity was exhibited in all areas. Correlations were shown to exist between the two knowledge examinations (Spearman’s rho = 039). Correlations existed between all dexterity task parameters and the equipment examination, whereas they existed for only 15 of the 28 parameters of the error examination and were always weaker. The stronger correlations between dexterity and instrument and operating room (OR) equipment reflect greater surgical experience and time spent in the OR. The weaker correlations between the error analysis and dexterity suggest that these skills are learned at different times. The identification of common surgical errors should be more formally taught to ensure greater uniformity.

Résumé

Les performances techniques comportent des éléments de connaissances chirurgicales, du jugement et de dextérité. Alors que l’évaluation de la dextérité chirurgicale est actuellement possible, celle des connaissances techniques et son rapport avec la dextérité n’ont pas encore été élucidés. Des chirurgiens, d’expérience variée, ont entrepris trois évaluations séparées en laboratoire de dextérité: dextérité chirurgicale simple (14 stations comportant un score par analyse des mouvements), un examen portant sur l’équipement opératoire et une analyse d’erreurs. On a corrélé les scores réalisés entre eux. Une valeur p = 0.05 a été considérée comme significative. 30 chirurgiens ont été recrutés et une validité de construction a été retrouvée dans tous les domaines. On a montré une corrélation entre les deux investigations explorant les connaissances (coefficient de Spearman’s rho = 0.39). On a mis en évidence une corrélation entre tous les paramètres de dextérité et l’examen concernant l’équipement, alors que cette corrélation n’existait que pour 15 des 28 paramètres dans l’analyse des erreurs et le coefficient de corrélation a toujours été moins élevé. Les corrélations les plus fortes entre la dextérité et l’analyse de l’équipement de la salle d’opération reflètent une expérience chirurgicale plus importante et un temps passé en salle d’opération plus long. Les corrélations plus faibles entre l’analyse d’erreur et la dextérité suggèrent que l’adresse des gestes est acquise à des moments différents. L’identification des erreurs les plus fréquentes devrait être formalisée pour assurer une meilleure uniformisation de la formation.

Resumen

El desempeño técnico quirúrgico depende del conocimiento, el juicio y la destreza. En tanto que la evaluación de la destreza hoy es factible, la evaluación del conocimiento técnico y su relación con la destreza todavía no ha sido elucidada. Se incluyeron cirujanos con diversos grados de experiencia para realizar 3 tipos de evaluación en el laboratorio de habilidades quirúrgicas: destreza quirúrgica simple (más de 4 estaciones, evaluadas por análisis de movimiento), un examen de equipo de salas de cirugía y un análisis de error novel. Se hizo la correlación de los resultados, dando valor significativo a una p de 0.05. Se incluyó un total de 30 cirujanos y se registró la validez de construcción en todas las áreas. Se demostró la existencia de correlaciones en 2 exámenes de conocimiento (rho = 039 de Spearman). Aparecieron correlaciones entre todos los parámétras de tareas de destreza y los exámenes de equipo, pero sólo apareció en 15 de los 28 parámetras del examen de error y éstas fueron consistentemente más débiles. Las más fuertes correlaciones entre la destreza y el instrumente y el equipo de salas de cirugia reflejan mayor experiencia quirurgica y mayor tiempo de trabajo en las salas de cirugía. Las débiles correlaciones entre el análisis de error y la destreza sugieren que estas habilidades pueden ser adquiridas en diferentes épocas. La identificatión de errores quirúrgicos comunes debería ser ensenada de manera más formal con el fin de lograr una mayor uniformidad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ault G, Reznick R, MacRae H, et al. Exporting a technical skills evaluation technology to other sites. Am. J. Surg. 2001;182:254–256

    Article  PubMed  CAS  Google Scholar 

  2. Datta V, Mackay S, Gillies D, et al. Motion analysis in the assessment of surgical skill. Comput. Methods Med. Biomed. Eng. 2001;4:515–523

    Article  Google Scholar 

  3. Datta V, Mackay S, Chang A, et al. The relationship between motion analysis and surgical technical assessments. Am. J. Surg. 2002;184:70–73

    Article  PubMed  Google Scholar 

  4. Goff BA, Lentz GM, Lee D, et al. Development of an objective structured assessment of technical skills for obstetric and gynecology residents. Obstet. Gynecol. 2000;96:146–150

    Article  PubMed  CAS  Google Scholar 

  5. Reznick RK. Teaching and testing technical skills. Am. J. Surg. 1993;165:358–361

    Article  PubMed  CAS  Google Scholar 

  6. Reznick R, Regehr G, MacRae H, et al. Testing technical skill via an innovative “bench station” examination. Am. J. Surg. 1997;173:226–230

    Article  PubMed  CAS  Google Scholar 

  7. Gallagher AG, Richie K, McClure N, et al. Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J. Surg. 2001;25:1478–1483

    Article  PubMed  CAS  Google Scholar 

  8. Rosser JC, Rosser LE, Savalgi RS. Skill acquisition and assessment for laparoscopic surgery. Arch. Surg. 1997;132:200–204

    PubMed  CAS  Google Scholar 

  9. Rosser JC, Rosser LE, Savalgi RS. Objective evaluation of a laparoscopic surgical skill program for residents and senior surgeons. Arch. Surg. 1998;133:657–661

    Article  PubMed  Google Scholar 

  10. Taffinder N, Sutton C, Fishwick RJ, et al. Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled studies using the MIST VR laparoscopic simulator. Stud. Health Technol. Inform. 1998;50:124–130

    PubMed  CAS  Google Scholar 

  11. Fielding LP, Stewart-Brown S, Dudley HA. Surgeon-related variables and the clinical trial. Lancet 1978;2:778–779

    Article  PubMed  CAS  Google Scholar 

  12. Fielding LP. Surgeon-related variability in the outcome of cancer surgery. J. Clin. Gastroenterol. 1988;10:130–132

    Article  PubMed  CAS  Google Scholar 

  13. Neville R, Fielding LP, Amendola C. Local tumor recurrence after curative resection for rectal cancer: a ten-hospital review. Dis. Colon Rectum 1987;30:12–17

    Article  PubMed  CAS  Google Scholar 

  14. Knaus WA, Zimmerman JE, Wagner DP, et al. APACHE: acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 1981;9:591–597

    Article  PubMed  CAS  Google Scholar 

  15. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit. Care Med. 1985;13:818–829

    Article  PubMed  CAS  Google Scholar 

  16. Bastos PG, Knaus WA. APACHE III study: a summary. Intensive Care World 1991;8:35–38

    PubMed  CAS  Google Scholar 

  17. Copeland GP, Jones D, Walters M. POSSUM: a scoring system for surgical audit. Br. J. Surg. 1991;78:355–360

    Article  PubMed  CAS  Google Scholar 

  18. Whiteley MS, Prytherch DR, Higgins B, et al. An evaluation of the POSSUM surgical scoring system. Br. J. Surg. 1996;83:812–815

    Article  PubMed  CAS  Google Scholar 

  19. Jones HJ, de Cossart L. Risk scoring in surgical patients. Br. J. Surg. 1999;86:149–157

    Article  PubMed  CAS  Google Scholar 

  20. Bann SD, Sarin S. Comparative audit: the trouble with POSSUM. J. R. Soc. Med. 2001;94:632–634

    PubMed  CAS  Google Scholar 

  21. Sanders AF. Simulation as a tool in the measurement of human performance. Ergonomics 1991;34:995–1025

    Article  PubMed  CAS  Google Scholar 

  22. Torkington J, Smith SG, Rees BI, et al. The role of simulation in surgical training. Ann. R. Coll. Surg. Engl. 2000;82:88–94

    PubMed  CAS  Google Scholar 

  23. Thomas WE, Lee PW, Sunderland GT, et al. A preliminary evaluation of an innovative synthetic soft tissue simulation module (‘Skilltray’) for use in basic surgical skills workshops. Ann. R. Coll. Surg. Engl. 1996;78:268–271

    PubMed  CAS  Google Scholar 

  24. Datta V, Mackay S, Mandalia M, et al. The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J. Am. Coll. Surg. 2001;193:479–485

    Article  PubMed  CAS  Google Scholar 

  25. Bann SD, Khan MS, Darzi AW. The measurement of surgical dexterity using motion analysis of simple surgical tasks. World J. Surg. 2003;27:390–394

    Article  PubMed  Google Scholar 

  26. Schueneman AL, Pickleman J, Hesslein R, et al. Neuropsychologic predictors of operative skill among general surgery residents. Surgery 1984;96:288–295

    PubMed  CAS  Google Scholar 

  27. Schueneman AL, Pickleman J, Freeark RJ. Age, gender, lateral dominance, and prediction of operative skill among general surgery residents. Surgery 1985;98:506–515

    PubMed  CAS  Google Scholar 

  28. Torkington J, Smith SG, Rees BI, et al. Skill transfer from virtual reality to a real laparoscopic task. Surg. Endosc. 2001;15:1076–1079

    Article  PubMed  CAS  Google Scholar 

  29. Reason J. Understanding adverse events: human factors. Qual. Health Care 1995;4:80–89

    Article  PubMed  CAS  Google Scholar 

  30. Cauraugh JH, Martin M, Martin KK. Modeling surgical expertise for motor skill acquisition. Am. J. Surg. 1999;177:331–336

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bann, S., Khan, M.S., Datta, V.K. et al. Technical performance: Relation between surgical dexterity and technical knowledge. World J. Surg. 28, 142–146 (2004). https://doi.org/10.1007/s00268-003-7071-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-003-7071-z

Keywords

Navigation