Skip to main content
Log in

Irreversible Investment in Wetlands Preservation: Optimal Ecosystem Restoration Under Uncertainty

  • Published:
Environmental Management Aims and scope Submit manuscript

The model, a stochastic dynamic program, is used to optimize the timing and type of protective structure under a range of management goals. A wetland can either be optimal for fish or optimal for mammals and waterfowl, but not both. Because credible estimates of the economic values of wetland services do not exist, we treat those values as parameters in a multiobjective analysis and show the decisions implied by alternative valuations. The model is applied to the case of Metzger Marsh, a Lake Erie coastal wetland near Toledo, Ohio, where the decision was made in 1993 to construct an open dike. We find that the optimal decision is robust with respect to varying assumptions about the formation of barrier beaches and the probability of climate change, but that the decision is not robust to assumptions concerning the health of an unprotected Metzger Marsh. The most important source of uncertainty is the biological health of an unprotected wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloczynski, J., Bogart, W., Hobbs, B. et al. Irreversible Investment in Wetlands Preservation: Optimal Ecosystem Restoration Under Uncertainty. Environmental Management 26, 175–193 (2000). https://doi.org/10.1007/s002670010080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002670010080

Navigation