Skip to main content
Log in

Land Cover Implications on Ecosystem Service Delivery: a Multi-Scenario Study of Trade-offs and Synergies in River Basins

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Land cover change scenarios hold far-reaching implications for ecosystem services (ES), highlighting the need for understanding the trade-offs and synergies underlying the provision of multiple ES. The insufficient knowledge of the mechanisms governing the relationships among multiple ES, along with the lack of information on trade-offs among ES under different scenarios, restricts the ability to provide effective information for decision-makers. To fill this gap, we assessed the interplay among six ES: climate regulation, habitat creating and maintaining species diversity, cultivated crops, regulation of the chemical condition of freshwaters by living processes (water quality), water yield, and control of erosion rates, within three river basins in northwest Portugal. We employed the InVEST to map the state of these ES in 2018, along with three projected land cover scenarios for 2050: business-as-usual, farmland return, and afforestation. Our findings indicated the business-as-usual scenario could lead to detrimental impacts on climate regulation, habitat creating and maintaining species diversity, and control of erosion rates. In contrast, the farmland return scenario showed less drastic decreases in habitat-creating and maintaining species diversity and control of erosion rates compared to the business-as-usual scenario. Afforestation emerged as the most favorable scenario, with a 13.6% increase in climate regulation and a 1.3% improvement in habitat-creating and maintaining species diversity. Cluster analysis allowed the identification of six levels of spatial synergies between ES, with regions of high forest cover showing extreme synergy and populated areas exhibiting the lowest levels of synergy, suggesting that a well-planned combination of these practices could yield substantial benefits for future ES provision. These results provide crucial insights for decision-makers to enhance ecosystem management and promote societal well-being. Importantly, our findings underscore the significance of considering multiple ES and their interrelationships in land use planning to achieve sustainable development objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abera W, Tamene L, Kassawmar T, Mulatu K, Kassa H, Verchot L, Quintero M (2021) Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia. Ecosyst Serv 50:101338

    Article  Google Scholar 

  • Agudelo CAR, Bustos SLH, Moreno CAP (2020) Modeling interactions among multiple ecosystem services. A critical review. Ecol Model 429:109103. https://doi.org/10.1016/j.ecolmodel.2020.109103

    Article  Google Scholar 

  • Albert C, Aronson J, Fürst C, Opdam P (2014) Integrating ecosystem services in landscape planning: requirements, approaches, and impacts. Landsc Ecol 29:1277–1285. https://doi.org/10.1007/s10980-014-0085-0

    Article  Google Scholar 

  • Almeida B, Cabral P (2021) Water yield modelling, sensitivity analysis and validation: a study for Portugal. ISPRS Int J Geo-Inf 10(8):494

    Article  Google Scholar 

  • Barros JFC, Calado JG (2014). A Cultura do Milho. Retrieved from https://dspace.uevora.pt/rdpc/handle/10174/10804 (Accessed March 17, 2023).

  • Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, López A, Elorza FJ, Schuhmacher M (2013) Ecosystem services in Mediterranean river basins: climate change impact on water provisioning and erosion control. Sci Total Environ 458:246–255

    Article  Google Scholar 

  • Bell SM, Barriocanal C, Terrer C, Rosell-Melé A (2020) Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ Sci Policy 108:104–111. https://doi.org/10.1016/j.envsci.2020.03.018

    Article  CAS  Google Scholar 

  • Berg C, Rogers S, Mineau M (2016) Building scenarios for ecosystem services tools: Developing a methodology for efficient engagement with expert stakeholders. Futures 81:68–80

    Article  Google Scholar 

  • Boardman J, Vandaele K (2023) Soil erosion and runoff: The need to rethink mitigation strategies for sustainable agricultural landscapes in western Europe. Soil Use Manag 39:673–685. https://doi.org/10.1111/sum.12898

    Article  Google Scholar 

  • Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75(3):268–277

    Article  Google Scholar 

  • Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver POB, Meurisse N, Oxbrough A, Taki H, Thompson ID (2017) Forest biodiversity, ecosystem functioning, and the provision of ecosystem services. Biodivers. Conserv 26:3005–3035

    Article  Google Scholar 

  • Buchadas A, Moreira F, McCracken DI, Lima-Santos J, Lomba A (2022) Assessing the potential delivery of ecosystem services by farmlands under contrasting management intensities. Ecol. Soc 27(1):5

    Article  Google Scholar 

  • Cabecinha E, Cortes R, Cabral JA, Ferreira T, Lourenço M, Pardal MÂ (2009) Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs. Ecol Indic 9(2):240–255

    Article  CAS  Google Scholar 

  • Camia A, Libertá G, San-Miguel-Ayanz J (2017) Modeling the impacts of climate change on forest fire danger in Europe. Jt Res Cent JRC Tech Rep. 1:22

    Google Scholar 

  • Campos JC, Rodrigues S, Sil Â, Hermoso V, Freitas TR, Santos JA, Fernandes PM, Azevedo JC, Honrado JP, Regos A (2022) Climate regulation ecosystem services and biodiversity conservation are enhanced differently by climate- and fire-smart landscape management. Environ Res Lett 17:054014. https://doi.org/10.1088/1748-9326/ac64b5

    Article  Google Scholar 

  • Cardoso A (2018) Vinho Verde – um “vinho diferente” para a Europa e para o mundo. In The overarching issues of the European space - preparing the new decade for key socio-economic and environmental challenges (pp. 234–246). Porto: Faculdade de Letras da Universidade do Porto

  • Carvalho-Ribeiro SM, Lovett A, O’Riordan T (2010) Multifunctional forest management in Northern Portugal: Moving from scenarios to governance for sustainable development. Land Use Policy 27:1111–1122. https://doi.org/10.1016/j.landusepol.2010.02.008

    Article  Google Scholar 

  • Carvalho-Santos C, Honrado JP, Hein L (2014) Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecol Complex 20:69–80

    Article  Google Scholar 

  • Carvalho-Santos C, Sousa-Silva R, Gonçalves J, Honrado JP (2016) Ecosystem services and biodiversity conservation under forestation scenarios: options to improve management in the Vez watershed, NW Portugal. Reg Environ Change 16:1557–1570. https://doi.org/10.1007/s10113-015-0892-0

    Article  Google Scholar 

  • Crossman ND, Burkhard B, Nedkov S (2012) Quantifying and mapping ecosystem services. Int J Biodivers Sci Ecosyst Serv Manag 8:1–4. https://doi.org/10.1080/21513732.2012.695229

    Article  Google Scholar 

  • Cunha J, Campos FS, David J, Padmanaban R, Cabral P (2021) Carbon sequestration scenarios in Portugal: which way to go forward? Environ Monit Assess 193:1–14

    Article  Google Scholar 

  • Damianidis C, Santiago-Freijanes JJ, den Herder M, Burgess P, Mosquera-Losada MR, Graves A, Papadopoulos A, Pisanelli A, Camilli F, Rois-Díaz M, Kay S, Palma JHN, Pantera A (2021) Agroforestry as a sustainable land use option to reduce wildfires risk in European Mediterranean areas. Agrofor Syst 95:919–929. https://doi.org/10.1007/s10457-020-00482-w

    Article  Google Scholar 

  • Dade MC, Mitchell MG, McAlpine CA, Rhodes JR (2019) Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 48:1116–1128

    Article  Google Scholar 

  • De Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7(3):260–272

    Article  Google Scholar 

  • Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnár Z, Hill R, Chan KM, Baste IA, Brauman KA, Polasky S (2018) Assessing nature’s contributions to people. Science 359(6373):270–272

    Article  Google Scholar 

  • Egoh B, Reyers B, Rouget M, Richardson DM, Le Maitre DC, van Jaarsveld AS (2008) Mapping ecosystem services for planning and management. Agric Ecosyst Environ 127:135–140. https://doi.org/10.1016/j.agee.2008.03.013

    Article  Google Scholar 

  • European Commission (2019) The European Green Deal. COM(2019) 640 final. European Commission, Brussels, Belgium

    Google Scholar 

  • Faria N, Morales MB (2020) Farmland management regulates ecosystem services in Mediterranean drylands: Assessing the sustainability of agri-environmental payments for bird conservation. J Nat Conserv 58:125913. https://doi.org/10.1016/j.jnc.2020.125913

    Article  Google Scholar 

  • Felipe-Lucia MR, Soliveres S, Penone C, Manning P, van der Plas F, Boch S, Prati D, Ammer C, Schall P, Gossner MM, Bauhus J, Buscot F, Blaser S, Blüthgen N, de Frutos A, Ehbrecht M, Frank K, Goldmann K, Hänsel F, Jung K, Kahl T, Nauss T, Oelmann Y, Pena R, Polle A, Renner S, Schloter M, Schöning I, Schrumpf M, Schulze E-D, Solly E, Sorkau E, Stempfhuber B, Tschapka M, Weisser WW, Wubet T, Fischer M, Allan E (2018) Multiple forest attributes underpin the supply of multiple ecosystem services. Nat Commun 9,:4839. https://doi.org/10.1038/s41467-018-07082-4

    Article  CAS  Google Scholar 

  • Felix L, Houet T, Verburg PH (2022) Mapping biodiversity and ecosystem service trade-offs and synergies of agricultural change trajectories in Europe. Environ Sci Policy 136:387–399. https://doi.org/10.1016/j.envsci.2022.07.004

    Article  Google Scholar 

  • Feng Q, Zhao W, Duan B, Hu X, Cherubini F (2021) Coupling trade-offs and supply-demand of ecosystem services (ES): A new opportunity for ES management. Geogr Sustain 2(4):275–280

    Google Scholar 

  • Fernandes PM (2013) Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc Urban Plan 110:175–182

    Article  Google Scholar 

  • Feurer M, Rueff H, Celio E, Heinimann A, Blaser J, Htun AM, Zaehringer JG (2021) Regional scale mapping of ecosystem services supply, demand, flow an mismatches in Southern Myanmar. Ecosyst Serv 52:101363

    Article  Google Scholar 

  • Fonseca AR, Santos JA (2018) High-resolution temperature datasets in Portugal from a geostatistical approach: Variability and extremes. J Appl Meteorol Climatol 57(3):627–644

    Article  Google Scholar 

  • Forio MAE, Villa-Cox G, Van Echelpoel W, Ryckebusch H, Lock K, Spanoghe P, Deknock A, De Troyer N, Nolivos-Alvarez I, Dominguez-Granda L, Speelman S (2020) Bayesian Belief Network models as trade-off tools of ecosystem services in the Guayas River Basin in Ecuador. Ecosyst Serv 44:101124

    Article  Google Scholar 

  • Fu Y, Zhang J, Zhang C, Zang W, Guo W, Qian Z, Liu L, Zhao J, Feng J (2018) Payments for Ecosystem Services for watershed water resource allocations. J Hydrol 556:689–700

    Article  Google Scholar 

  • Giri S (2021) Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environ Pollut 271:116332

    Article  CAS  Google Scholar 

  • Gomes E, Inácio M, Bogdzevič K, Kalinauskas M, Karnauskaitė D, Pereira P (2021) Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci Total Environ 781:146716. https://doi.org/10.1016/j.scitotenv.2021.146716

    Article  CAS  Google Scholar 

  • Grass I, Loos J, Baensch S, Batáry P, Librán-Embid F, Ficiciyan A, Klaus F, Riechers M, Rosa J, Tiede J, Udy K, Westphal C, Wurz A, Tscharntke T (2019) Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat 1:262–272. https://doi.org/10.1002/pan3.21

    Article  Google Scholar 

  • Grêt-Regamey A, Weibel B, Bagstad KJ, Ferrari M, Geneletti D, Klug H, Orsi F, Wolff F (2017) On the effects of scale for ecosystem services mapping. PLoS One 12(12):e0170625

    Google Scholar 

  • Iglesias MC, Hermoso V, Campos JC, Carvalho-Santos C, Fernandes PM, Freitas TR, Honrado JP, Santos JA, Sil Â, Regos A, Azevedo JC (2022) Climate- and fire-smart landscape scenarios call for redesigning protection regimes to achieve multiple management goals. J Environ Manag 322:116045. https://doi.org/10.1016/j.jenvman.2022.116045

    Article  Google Scholar 

  • Juerges N, Arts B, Masiero M, Hoogstra-Klein M, Borges JG, Brodrechtova Y, Brukas V, Canadas MJ, Carvalho PO, Corradini G, Corrigan E (2021) Power 694 analysis as a tool to analyse trade-offs between ecosystem services in forest management: A case study from nine European countries. Ecosyst Serv 49:101290

    Article  Google Scholar 

  • Kennedy CM, Hawthorne PL, Miteva DA, Baumgarten L, Sochi K, Matsumoto M, Evans JS, Polasky S, Hamel P, Vieira EM, Develey PF (2016) Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol Conserv 204:221–230

    Article  Google Scholar 

  • Krengel F, Bernhofer C, Chalov S, Efimov V, Efimova L, Gorbachova L, Habel M, Helm B, Kruhlov I, Nabyvanets Y, & Osadcha N (2018) Challenges for transboundary river management in Eastern Europe–three case studies. Die Erde 149:157–172. https://doi.org/10.12854/erde-2018-389

  • Knorr W, Dentener F, Hantson S, Jiang L, Klimont Z, Arneth A (2016) Air quality impacts of European wildfire emissions in a changing climate. Atmos Chem Phys 16:5685–5703. https://doi.org/10.5194/acp-16-5685-2016

    Article  CAS  Google Scholar 

  • Lin YP, Lin WC, Wang YC, Lien WY, Huang T, Hsu CC, Crossman ND (2017) Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ Model Softw 90:126–146

    Article  CAS  Google Scholar 

  • Lü Y, Fu B, Feng X, Zeng Y, Liu Y, Chang R, Sun G, Wu B (2012) A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PloS one 7(2):e31782

    Article  Google Scholar 

  • Maes J, Egoh B, Willemen L, Liquete C, Vihervaara P, Schägner JP, Grizzetti B, Drakou EG, La Notte A, Zulian G, Bouraoui F, Paracchini ML, Braat L, Bidoglio G (2012) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1(1):31–39

    Article  Google Scholar 

  • Maia R, Costa M, Mendes J (2022) Improving Transboundary Drought and Scarcity Management in the Iberian Peninsula through the Definition of Common Indicators: The Case of the Minho-Lima River Basin District. Water 14:425. https://doi.org/10.3390/w14030425

    Article  Google Scholar 

  • Marques SM, Campos FS, David J, Cabral P (2021) Modelling sediment retention services and soil erosion changes in Portugal: A spatio-temporal approach. ISPRS Int J Geo-Inf 10:262. https://doi.org/10.3390/ijgi10040262

    Article  Google Scholar 

  • Mascarenhas A, Haase D, Ramos TB, Santos R (2019) Pathways of demographic and urban development and their effects on land take and ecosystem services: The case of Lisbon Metropolitan Area, Portugal. Land Use Policy 82:181–194. https://doi.org/10.1016/j.landusepol.2018.11.056

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KM, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

    Article  Google Scholar 

  • Neto J, Aguiar A, Parente C, Costa CAD, & Fonseca S (2021) The protection of vineyards in family farms: Decision making and use of pesticides. In Proceedings of the Douro and Porto Congress: Memory with Future

  • Pacheco RM, Claro J (2023) Characterising wildfire impacts on ecosystem services: A triangulation of scientific findings, governmental reports, and expert perceptions in Portugal. Environ Sci Policy 142:194–205

    Article  Google Scholar 

  • Pham HV, Sperotto A, Furlan E, Torresan S, Marcomini A, Critto A (2021) Integrating Bayesian Networks into ecosystem services assessment to support water management at the River Basin Scale. Ecosyst Serv 50:101300

    Article  Google Scholar 

  • Pierce FJ, Nowak P (1999) Aspects of precision agriculture. Adv. Agron 67:1–85

    Article  Google Scholar 

  • Pimenta MT, Santos MJ, & Rodrigues R (1998) Vulnerability to desertification process inferred from water exchanges in the soil. In Headwater 98, Poster Volume, Hydrology, Water Resources and Ecology of Mountain Areas (pp. 21–24). European Academy Bozen/Bolzano, Section Alpine Environment

  • Portela A. P, Vieira C, Carvalho-Santos C, Goncalves J, Durance I, Honrado J (2021) Regional planning of river protection and restoration to promote ecosystem services and nature conservation. Landsc Urban Plan 211:104101

    Article  Google Scholar 

  • Posner SM, McKenzie E, Ricketts TH (2016) Policy impacts of ecosystem services knowledge. Proc Natl Acad Sci 113(7):1760–1765

    Article  CAS  Google Scholar 

  • QGIS Development Team (2022) QGIS Geographic Information System. QGIS Association. https://www.qgis.org/

  • Ramião JP, Carvalho-Santos C, Pinto R, Pascoal C (2022) Modeling the effectiveness of sustainable agricultural practices in reducing sediments and nutrient export from a river basin. Water 14:3962. https://doi.org/10.3390/w14233962

    Article  CAS  Google Scholar 

  • Raudsepp-Hearne C, Peterson GD, Bennett EM (2010) Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci 107(11):5242–5247

    Article  CAS  Google Scholar 

  • Redhead JW, May L, Oliver TH, Hamel P, Sharp R, Bullock JM (2018) National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci Total Environ 610:666–677

    Article  Google Scholar 

  • Regos A, Pais S, Campos JC, Lecina-Diaz J, Regos A, Pais S, Campos JC, Lecina-Diaz J (2023) Nature-based solutions to wildfires in rural landscapes of Southern Europe: let’s be fire-smart! Int J Wildland Fire 32:942–950. https://doi.org/10.1071/WF22094

    Article  Google Scholar 

  • RStudio Team (2022) RStudio: Integrated Development Environment for R. RStudio, PBC. https://www.rstudio.com/

  • Sánchez-Canales M, López-Benito A, Acuña V, Ziv G, Hamel P, Chaplin-Kramer R, Elorza FJ (2015) Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: Global change and management implications. Sci Total Environ 502:602–610

    Article  Google Scholar 

  • Sanches Fernandes LF, Fernandes ACP, Ferreira ARL, Cortes RMV, Pacheco FAL (2018) A partial least squares – Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci Total Environ 626:1069–1085. https://doi.org/10.1016/j.scitotenv.2018.01.127

    Article  CAS  Google Scholar 

  • Sanderson FJ, Kucharz M, Jobda M, Donald PF (2013) Impacts of agricultural intensification and abandonment on farmland birds in Poland following EU accession. Agric Ecosyst Environ 168:16–24. https://doi.org/10.1016/j.agee.2013.01.015

    Article  Google Scholar 

  • Santopuoli G, Temperli C, Alberdi I, Barbeito I, Bosela M, Bottero A, Klopčič M, Lesinski J, Panzacchi P, Tognetti R (2021) Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe. Can J Res 51:1741–1750. https://doi.org/10.1139/cjfr-2020-0166

    Article  Google Scholar 

  • Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R journal 8(1):289

    Article  Google Scholar 

  • Sharp R, Tallis HT, Ricketts T, Guerry A. D, Wood SA, Chaplin-Kramer R, & Olwero N (2018) InVEST User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy and World Wildlife Fund, Stanford

  • Sieber IM, Hinsch M, Vergílio MH, Gil AJF, Burkhard B (2021) Assessing the effects of different land-use/land-cover input datasets on modeling and mapping terrestrial ecosystem services: Case study Terceira Island (Azores, Portugal). One Ecosyst 6:1–26

    Article  Google Scholar 

  • Sil Â, Rodrigues AP, Carvalho-Santos C, Nunes JP, Honrado J, Alonso J, Marta-Pedroso C, Azevedo JC (2016) Trade-offs and synergies between provisioning and regulating ecosystem services in a mountain area in Portugal affected by landscape change. Mt Res Dev 36:452–464. https://doi.org/10.1659/MRD-JOURNAL-D-16-00035.1

    Article  Google Scholar 

  • Spake R, Lasseur R, Crouzat E, Bullock JM, Lavorel S, Parks KE, ... & Eigenbrod F (2017) Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Glob Environ Change 47:37–50

  • Suzette Lorilla R, Kefalas G, Christou AK, Poirazidis K, Homer Eliades N-G (2023) Enhancing the conservation status and resilience of a narrowly distributed forest: A challenge to effectively support ecosystem services in practice. J Nat Conserv 73:126414. https://doi.org/10.1016/j.jnc.2023.126414

    Article  Google Scholar 

  • Tenerelli P, Carver S (2012) Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modelling. Appl Geogr 32(2):724–736

    Article  Google Scholar 

  • Vieira DCS, Borrelli P, Jahanianfard D, Benali A, Scarpa S, Panagos P (2023) Wildfires in Europe: Burned soils require attention. Environ Res 217:114936. https://doi.org/10.1016/j.envres.2022.114936

    Article  CAS  Google Scholar 

  • Vigerstol, K. L.; Aukema, J. E. A comparison of tools for modeling freshwater ecosystem services. J Environ Manage 2011, 1–7, https://doi.org/10.1016/j.jenvman.2011.06.040.

  • Wang Y, Dai E (2020) Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J Clean Prod 264:121573

    Article  Google Scholar 

  • Wu W, Zeng H, Guo C, You W, Xu H, Hu Y, Wang M, & Liu X (2023) Spatial heterogeneity and management challenges of ecosystem service trade-offs: a case study in Guangdong Province, China. Environ Manage, 1–17. https://doi.org/10.1007/s00267-023-01851-8

  • Yang S, Zhao W, Liu Y, Wang S, Wang J, Zhai R (2018) Influence of land use change on the ecosystem service trade-offs in the ecological restoration area: Dynamics and scenarios in the Yanhe watershed, China. Sci Total Environ 644:556–566. https://doi.org/10.1016/j.scitotenv.2018.06.348

    Article  CAS  Google Scholar 

  • Zak D, Stutter M, Jensen HS, Egemose S, Carstensen MV, Audet J, Strand JA, Feuerbach P, Hoffmann CC, Christen B, Hille S (2019) An assessment of the multifunctionality of integrated buffer zones in Northwestern Europe. J Environ Qual 48(2):362–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the River2Ocean project (NORTE-01-0145- FEDER-000068), co-financed by the European Regional Development Fund (ERDF), through Programa Operacional Regional do Norte (NORTE 2020). This study had the support of Fundação para a Ciência e a Tecnologia (FCT, I.P.) by national funds through the strategic projects “Financiamento Programático” UIDB/04050/2020 awarded to CBMA and LA/P/0069/2020 awarded to the Associate Laboratory ARNET. Claudia Carvalho-Santos is supported by the “Financiamento Programático” UIDP/04050/2020 funded by national funds through the FCT, I.P.

Author contributions

All authors participated in the conceptualization, review, and final approval of the manuscript. Janeide Padilha and Claudia Carvalho-Santos wrote the main manuscript text and data analysis. Claudia Pascoal and Fernanda Cassio Writing-reviewing and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janeide Padilha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilha, J., Carvalho-Santos, C., Cássio, F. et al. Land Cover Implications on Ecosystem Service Delivery: a Multi-Scenario Study of Trade-offs and Synergies in River Basins. Environmental Management 73, 753–768 (2024). https://doi.org/10.1007/s00267-023-01916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-023-01916-8

Keywords

Navigation