Skip to main content

Advertisement

Log in

Hydropower Plants as Dispersal Barriers in Freshwater Species Distribution Models: Using Restrictions through Asymmetrical Dispersal Predictors

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Hydropower plants represent one of the greatest threats for freshwater fish by fragmenting the habitat and avoiding the species dispersal. This type of dispersal barrier is often disregarded when predicting freshwater species distribution due to the complexity in inserting the species dispersal routes, and thus the barriers, into the models. Here, we evaluate the impact of including hydroelectric dams into species distribution models through asymmetrical dispersal predictors on the predicted geographic distribution of freshwater fish species. For this, we used asymmetrical dispersal (i.e., AEM) as predictors for modeling the distribution of 29 native fish species of Tocantins-Araguaia River basin. After that, we included the hydropower power plant (HPP) location into the asymmetrical binary matrix for the AEM construction by removing the connections where the HPP is located, representing the downstream disconnection a dam causes in the fish species dispersal route. Besides having higher predicted accuracy, the models using the HPP information generated more realistic predictions, avoiding overpredictions to areas suitable but limited to the species dispersal due to an anthropic barrier. Furthermore, the predictions including HPPs showed higher loss of species richness and nestedness (i.e., loss of species instead of replacement), especially for the southeastern area which concentrates most planned and built HPPs. Therefore, using dispersal constraints in species distribution models increases the reliability of the predictions by avoiding overpredictions based on premise of complete access by the species to any area that is climatically suitable regardless of dispersal barriers or capacity. In conclusion, in this study, we use a novel method of including dispersal constraints into distribution models through a priori insertion of their location within the asymmetrical dispersal predictors, avoiding a posteriori adjustment of the predicted distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Anderson EP, Freeman MC, Pringle CM (2006) Ecological consequences of hydropower development in Central America: impacts of small dams and water diversion on neotropical stream fish assemblages. River Res Appl 22:397–411. https://doi.org/10.1002/rra.899

    Article  Google Scholar 

  • Anderson RL, Anderson CA, Larson JH, Knights B, Vallazza J, Jenkins SE, Lamer JT (2020) Influence of a high‐head dam as a dispersal barrier to fish community structure of the Upper Mississippi River. River Res Appl 36:47–56. https://doi.org/10.1002/rra.3534

    Article  Google Scholar 

  • ANEEL (2020) Available in: https://www.gov.br/aneel/pt-brANEEL

  • Balian EV, Segers H, Lévèque C, Martens K (2008) The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595:627–637. https://doi.org/10.1007/s10750-007-9246-3

    Article  Google Scholar 

  • Barbarossa V, Schmitt RJP, Huijbregts MAJ, Zarfl C, King H, Schipper AM (2020) Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci USA 117:3648–3655. https://doi.org/10.1073/pnas.1912776117

    Article  CAS  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Bertaco VA, Carvalho FR, Jerep FC (2010) Astyanax goyanensis (Miranda-Ribeiro, 1944), new combination and Astyanax courensis, new species (Ostariophysi: Characiformes): two Characidae from the upper rio Tocantins basin, Central Brazil. Neotrop Ichthyol 8(2):265–275

    Article  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel TFLVB, Bastos RP, Pinto MP (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity Distrib 12:475–482. https://doi.org/10.1111/j.1366-9516.2006.00286.x

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Modelling directional spatial processes in ecological data. Ecol Model 215:325–336. https://doi.org/10.1016/j.ecolmodel.2008.04.001

    Article  Google Scholar 

  • Breiman L (2001) Random Forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Britski HA (1997) Descrição de um novo gênero de Hypoptopomatinae, com duas espécies novas (Siluriformes, Loricariidae). Papéis Avulsos de Zoologia, Museu de Zoologia da Universidade de São Paulo 40(15):231–255

    Google Scholar 

  • Campos-da-Paz R (2000) On Sternarchorhynchus Castelnau: A South American Electric Knifefish, with Descriptions of Two New Species (Ostariophysi: Gymnotiformes: Apteronotidae). Copeia 2000(2):521–535

    Article  Google Scholar 

  • Cardoso AR, de Lucinda PHF (2003) Three new species of Hemiancistrus (Teleostei: Siluriformes: Loricariidae) from the rio Tocantins basin with comments on the genus. Ichthyol Explor Freshwat 14(1):73–84

    Google Scholar 

  • Carneiro LRDA, Lima AP, Machado RB, Magnusson WE (2016) Limitations to the use of species-distribution models for environmental-impact assessments in the Amazon. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0146543

    Article  CAS  Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) Domain - a Flexible Modeling Procedure for Mapping Potential Distributions of Plants and Animals. Biodivers Conserv 2:667–680. https://doi.org/10.1007/BF00051966

    Article  Google Scholar 

  • Castelnau FL (1855) Poissons. In: Animaux nouveaux or rares recueillis pendant l'expédition dans les parties centrales de l'Amérique du Sud, de Rio de Janeiro a Lima, et de Lima au Para; exécutée par ordre du gouvernement Français pendant les années 1843 a 1847. Part 7,. Zoologie. Paris (P. Bertrand). 2: i-xii + 1-112, Pls. 1–50

  • Costa WJEM (1994) A new genus and species of Sarcoglanidinae (Siluriformes: Trichomycteridae) from the Araguaia Basin, central Brazil, with notes on subfamilial phylogeny. Ichthyol Explor Freshwat 5(3):207–216

    Google Scholar 

  • Costa WJEM (1994) Description of two new species of the genus Moenkhausia (Characiformes: Characidae) from the central Brazil. Zoologischer Anzeiger 232(1–2):21–29

    Google Scholar 

  • Carvalho TP, Pablo Lehmann A, Reis RE (2008) Gymnotocinclus anosteos, a new uniquely-plated genus and species of loricariid catfish (Teleostei: Siluriformes) from the upper rio Tocantins basin, central Brazil. Neotrop Ichthyol 6(3):329–338

    Article  Google Scholar 

  • D’Amen M, Dubuis A, Fernandes RF, Pottier J, Pellissier L, Guisan A (2015) Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. J Biogeogr 42:1255–1266. https://doi.org/10.1111/jbi.12485

    Article  Google Scholar 

  • de Santana CD, Pablo Lehmann A (2006) Apteronotus camposdapazi, a new species of black ghost electric knifefish, from the Rio Tocantins basin, Brazil (Gymnotiformes: Apteronotidae). Ichthyol Explor Freshwat 17(3):261–266

    Google Scholar 

  • de Souza LS, Melo MRS, Chamon CC, Armbruster JW (2008) A new species of Hemiancistrus from the rio Araguaia basin, Goiás state, Brazil (Siluriformes: Loricariidae). Neotrop Ichthyol 6(3):419–424

  • Domisch S, Amatulli G, Jetz W (2015) Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci Data 2:150073. https://doi.org/10.1038/sdata.2015.73

    Article  CAS  Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2019) Adespatial: multivariate multiscale spatial analysis. Package ‘adespatial’. R package 2019:3–8.

  • Duan RY, Kong XQ, Huang MY, Varela S, Ji X (2016) The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ e2185. https://doi.org/10.7717/PEERJ.2185/SUPP-5

  • Eigenmann CH, Eigenmann RS (1889) Preliminary notes on South American Nematognathi. II. Proceedings of the California Academy of Sciences (Series 2). 2:28–56

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Ferreira RB, Parreira MR, Nabout JC (2021) The impact of global climate change on the number and replacement of provisioning ecosystem services of Brazilian Cerrado plants. Environ Monit Assess 193:731. https://doi.org/10.1007/s10661-021-09529-6

    Article  Google Scholar 

  • Fichberg I, Chamon CC (2008) Rineloricaria osvaldoi (Siluriformes: Loricariidae): a new species of armored catfish from rio Vermelho, Araguaia basin, Brazil. Neotrop Ichthyol 6(3):347–354

    Article  Google Scholar 

  • Fisch-Muller S, Mazzoni R, Weber C (2001) Genetic and morphological evidences for two new sibling species of Ancistrus (Siluriformes: Loricariidae) in upper rio Tocantins drainage, Brazil Ichthyol Explor Freshwat 12(4):289–304

    Google Scholar 

  • Frey GW, Linke DM (2002) Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way. Energy Policy 30:1261–5. https://doi.org/10.1016/S0301-4215(02)00086-1

  • Garutti V (1998) Descrição de uma espécie nova de Astyanax (Teleostei, Characidae) da bacia do Tocantins, Brasil. Iheringia, Sér Zool 85:115–122

    Google Scholar 

  • Gowans ARD, Armstrong JD, Priede IG (1999) Movements of adult Atlantic salmon in relation to a hydroelectric dam and fish ladder. J Fish Biol 54:713–726. https://doi.org/10.1111/j.1095-8649.1999.tb02028.x

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Habit E, Belk MC, Parra O (2007) Response of the riverine fish community to the construction and operation of a diversion hydropower plant in central Chile. Aquat Conserv Mar Freshw Ecosyst 17:37–49. https://doi.org/10.1002/aqc.774

    Article  Google Scholar 

  • Hall CJ, Jordaan A, Frisk MG (2011) The historic influence of dams on diadromous fish habitat with a focus on river herring and hydrologic longitudinal connectivity. Landsc Ecol 26:95–107. https://doi.org/10.1007/s10980-010-9539-1

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2016) dismo: species distribution modeling. R package version 1.0-15. https://cran.r-project.org/web/packages/dismo/index.html

  • Hollanda Carvalho P, Weber C (2005) Five new species of the Hypostomus cochliodon group (Siluriformes: Loricariidae) from the middle and lower Amazon System. Revue Suisse de Zoologie 111(4):953–978

    Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. https://doi.org/10.2307/1939574

    Article  Google Scholar 

  • Kaygusuz K (2016) Hydropower as clean and renewable energy source for electricity generation. J Eng Res Appl Sci 5:359–369

    Google Scholar 

  • Kuriqi A, Pinheiro AN, Sordo-Ward A, Bejarano MD, Garrote L (2021) Ecological impacts of run-of-river hydropower plants—current status and future prospects on the brink of energy transition. Renew Sustain Energy Rev 142:110833. https://doi.org/10.1016/J.RSER.2021.110833

    Article  Google Scholar 

  • Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. BioScience 62:539–548. https://doi.org/10.1525/bio.2012.62.6.5

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of ocurrence in the prediction of species distributions. Ecography 28:385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Lucinda PHF, Vari RP (2009) New Steindachnerina Species (Teleostei: Characiformes: Curimatidae) from the Rio Tocantins Drainage. Copeia 2009(1):142–147

    Article  Google Scholar 

  • de Lucena ZMS, de Lucena CAS (1999) Moenkhausia tergimacula, a new species from the upper rio Tocantins, Brazil (Osteichthyes: Characidae). Ichthyol Explor Freshwat 10(3):231–236

    Google Scholar 

  • Medinas de Campos M, Tritico HM, Girard P, Zeilhofer P, Hamilton SK, Fantin‐Cruz I (2020) Predicted impacts of proposed hydroelectric facilities on fish migration routes upstream from the Pantanal wetland (Brazil). River Res Appl 36(3):452–464

    Article  Google Scholar 

  • Mendes P, Velazco SJE, Andrade AFA, de, De Marco P (2020) Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol Model 431:109180. https://doi.org/10.1016/j.ecolmodel.2020.109180

    Article  Google Scholar 

  • Menezes NA (2006) Description of five new species of Acestrocephalus Eigenmann and redescription of A. sardina and A. boehlkei (Characiformes: Characidae). Neotrop Ichthyol 4:385–400

    Article  Google Scholar 

  • Moreira CR (2005) Xenurobrycon coracoralinae, a new glandulocaudine fish (Ostariophysi: Characiformes) from central Brazil. Proc Biol Soc Washington 118(4):855–862

    Article  Google Scholar 

  • Myers GS (1927) Descriptions of new South American fresh-water fishes collected by Dr. Carl Ternetz. Bull Mus comp Zool 68(3):107–135

    Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized Linear Models. J R Stat Soc Ser A 135:370–384. https://doi.org/10.2307/2344614

    Article  Google Scholar 

  • Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th ed. John Wiley & Sons, Inc., Hoboken, New Jersey

  • Nijssen H, Isbrücker IJH (1971) Two new species of the catfish genus Corydoras from Brazil and Peru (Pisces, Siluriformes, Callichthyidae). Beaufortia 18(239):183–189

    Google Scholar 

  • Nijssen H, Isbrücker IJH (1976) The South American plated catfish genus Aspidoras R. von Ihering, 1907, with descriptions of nine new species from Brazil (Pisces, Siluriformes, Callichthyidae). Bijdragen tot de Dierkunde 46(1):107–131

    Article  Google Scholar 

  • Nilsson C (1997) Long-term responses of river-margin vegetation to water-level regulation. Science 276:798–800. https://doi.org/10.1126/science.276.5313.798

    Article  CAS  Google Scholar 

  • Pavanelli CS, Britski HA (2003) Apareiodon Eigenmann, 1916 (Teleostei, Characiformes), from the Tocantins-Araguaia basin, with description of three new species. Copeia 2003(2):337–348

    Article  Google Scholar 

  • Pelicice FM, Agostinho AA, Akama A, Andrade Filho JD, Azevedo-Santos VM, Barbosa MVM, Bini LM, Brito MFG, dos Anjos Candeiro CR, Caramaschi ÉP, Carvalho P (2021) Large-scale degradation of the Tocantins-Araguaia River basin. Environ Manag 68(4):445–452. pp.

    Article  Google Scholar 

  • Peluso LM, Mateus L, Penha J, Bailly D, Cassemiro F, Suárez Y, Fantin-Cruz I, Kashiwaqui E, Lemes P (2022) Climate change negative effects on the Neotropical fishery resources may be exacerbated by hydroelectric dams. Sci Total Environ 828:154485. Jul 1

    Article  CAS  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princenton University Press, Princeton

  • Pfauserová N, Brabec M, Slavík O, Horký P, Žlábek V, Hladík M (2022) Effects of physical parameters on fish migration between a reservoir and its tributaries. Sci Rep 12:8612. https://doi.org/10.1038/s41598-022-12231-3

    Article  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4):231–259

    Article  Google Scholar 

  • Pringle CM, Freeman MC, Freeman BJ (2000) Regional effects of hydrologic alterations on riverine macrobiota in the new world: tropical–temperate comparisons. BioScience 50:807. https://doi.org/10.1641/0006-3568(2000)050[0807:REOHAO]2.0.CO;2

    Article  Google Scholar 

  • Rangel TF, Loyola RD (2012) Labeling Ecological Niche Models. Nat Conserv 10:1119–126. https://doi.org/10.4322/natcon.2012.030

    Article  Google Scholar 

  • R Core Team (2019) A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Ribeiro FR, Lucena CAS, Lucinda PHF (2008) Three new Pimelodus species (Siluriformes: Pimelodidae) from the rio Tocantins drainage, Brazil. Neotrop Ichthyol 6(3):455–464

    Article  Google Scholar 

  • Schölkopf B (2001) Statistical learning andkernel methods. Springer, Vienna, pp. 3–24

  • Stoffers T, Buijse AD, Nagelkerke LAJ, Verreth JAJ (2022) Environmental requirements and heterogeneity of rheophilic fish nursery habitats in European lowland rivers: current insights and future challenges. Fish Fish 23:162–182. https://doi.org/10.1111/faf.12606

    Article  Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc 29:344–358. https://doi.org/10.1899/08-171.1

    Article  Google Scholar 

  • Swets J (1988) Measuring the accuracy of diagnostic systems. Science (80-) 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  Google Scholar 

  • Takahashi Y, Rashid MH, Sarkar A, Asaeda T, Isono M, Omura T, Koga K (2016) Use of ladderways in fragmented habitat to aid the movement of Japanese giant salamander (Andrias japonicus). Int J River Basin Manag 14:233–241. https://doi.org/10.1080/15715124.2016.1159572

  • Toro ID, Ribbons RR, Hayward J, Andersen AN (2018) Are stacked species distribution models accurate at predicting multiple levels of diversity along a rainfall gradient? Austral Ecol https://doi.org/10.1111/aec.12658

  • Vari RP, Harold AS (2001) Phylogenetic study of the neotropical fish genera Creagrutus Günther and Piabina Reinhardt (Teleostei: Ostariophysi: Characiformes), with revision of the Cis-Andean species. Smithson Contrib Zool 613:i-v + 1–239

    Article  Google Scholar 

  • Vari RP, Williams Vari AM (1989) Systematics of the Steindachnerina hypostoma complex (Pisces, Ostariophysi, Curimatidae), with the description of three new species. Proc Biol Soc Washington 102(2):468–482

    Google Scholar 

  • Vasudev D, Fletcher RJ, Goswami VR, Krishnadas M (2015) From dispersal constraints to landscape connectivity: lessons from species distribution modeling. Ecography 38:967–978. https://doi.org/10.1111/ecog.01306

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. https://doi.org/10.1038/nature09440

    Article  CAS  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Diversity Distrib 11:3–23. https://doi.org/10.1111/j.1366-9516.2005.00143.x

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88(1):15–30

    Article  Google Scholar 

  • Zhao T, Chen S, Fu C, Zhong Q (2018) Influence of diversion channel section type on landslide dam draining effect. Environ Earth Sci 77:1–9. https://doi.org/10.1007/s12665-017-7217-1

    Article  Google Scholar 

Download references

Acknowledgements

We thank Fabrício Barreto Teresa for his help with obtaining the species distribution data. MRP thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – finance code 001) and FAPEG for the PhD scholarship received. Our work on SDMs has been continuously supported by different grants: CNPq, Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG/process 201710267000519), and National Institutes for Science and Technology (INCT) in Ecology, Evolution and Biodiversity Conservation (MCTI/CNPq/FAPEG/465610/2014-5), and Brazilian Network on Global Climate Change Research (Rede CLIMA). JCN was supported by the CNPq productivity fellowship (process 303181/2022-2).

Author Contributions

JCN and MP: Conception and design, analysis and interpretation of data, acquisition of data, and drafting of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micael Rosa Parreira.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parreira, M.R., Nabout, J.C. Hydropower Plants as Dispersal Barriers in Freshwater Species Distribution Models: Using Restrictions through Asymmetrical Dispersal Predictors. Environmental Management 72, 424–436 (2023). https://doi.org/10.1007/s00267-023-01812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-023-01812-1

Keywords

Navigation