Skip to main content

Advertisement

Log in

Understorey Seedling Bank in Forest Areas with a Differing Period of Recovery in Mabira Central Forest Reserve, South Central Uganda

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Seedling banks are very important in forest regeneration following forest disturbances such as crop cultivation. In 2011 and 2013 the Uganda National Forestry Authority (NFA) evicted encroachers from parts of Mabira Central Forest Reserve that had been under crop cultivation for over 40 years. This gave an opportunity for the vegetation to recover. In this study, we assessed the recovery process based on seedling bank diversity, richness and density in three blocks differing in recovery time. Two disturbed blocks, the Western Block (WB) (abandoned by encroachers 1–3 years), and the Eastern Block (EB) (abandoned 4–5 years) before this study and a nearby undisturbed area (intact) were included in the study. We recorded 48 seedlings species; 37 in WB, 30 in EB and 27 in intact. Differences in species richness were not statistically significant among blocks (F2, 88 = 1.2420, p = 0.294). All seedling species found in the intact were found in the EB and WB. There were statistically significant differences in species diversity (Shannon–Wiener: F2, 88 = 5.354, p = 0.006), density (P < 0.001) and composition (ANOSIM; R = 0.55, p = 0.001) among blocks. Apart from Broussonetia papyrifera, other species contributing to the dissimilarity (Acalypha neptunica, Antiaris toxicaria, Blighia unijugata, Funtumia elastica were late succession species. Animal dispersed species dominated intact. Seed-regenerating species were found in both WB and EB, but re-sprouts were more common in EB. These results show that proximity to intact forest aids forest recovery, even for areas with long-term cultivation history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antos JA, Guest HJ, Parish R (2005) The tree seedling bank in an ancient Montane forest: stress tolerators in a productive environment. J Ecol 93:536–543

    Article  Google Scholar 

  • Baboo B, Sagar R, Bargali SS, Verma H (2017) Tree species composition, regeneration and diversity of an Indian dry tropical forest protected area. Trop Ecol 58:409–423

    Google Scholar 

  • Babweteera F, Brown N (2010) Spatial patterns of tree recruitment in East African tropcial forests that have lost their vertebrate seed dispersers. J Trop Ecol 26:193–203

    Article  Google Scholar 

  • Bachelot B, Kobe RK, Vriesendorp (2015) Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species or no species. Oecologia 179:853–861

    Article  Google Scholar 

  • Baranga D (2007) Observations on resource use in Mabira Forest Reserve, Uganda. Afr J Ecol 45:2–6

    Article  Google Scholar 

  • Benitez-Malvido J (1998) Impact of forest fragmentation on seedling abundance in a tropical rain forest. Conserv Biol 12:380–389

    Article  Google Scholar 

  • Bongers F, Poorter L, Hawthorne WD, Sheil D (2009) The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecol Lett 12:789–805

    Article  Google Scholar 

  • Caper RS, Chazdon RL, Brenes AR, Alvarado BV (2005) Successional dynmaics of woody seedling communities in wet tropical secondary forests. J Ecol 93:1071–1084

    Article  Google Scholar 

  • Carlson AR, Sibold JC, Negron JF (2020) Canopy structure and below canopy temperatures interact to shape seedling response to distrubance in a rocky mountain subalpine forest. Forest Ecol Manag 472 https://doi.org/10.1016/j.foreco.2020.118234

  • Chapman C, Chapman LJ (1997) Forest regeneration in logged and unlogged forests of Kibale national park, Uganda. Biotropica 29:396–412

  • Charles LS, Dwyer JM, Smith TJ, Connors S, Marschner P, Mayfield MM (2018) Species wood densityand the location of planted seedlings drive early-stage seedlingsurvival during tropical forest restoration. J Appl Ecol 55:1009–1018. https://doi.org/10.1111/1365-2664.1303

    Article  Google Scholar 

  • Colon SM, Lugo AE (2006) Recovery of a Subtropical dry forest after abandonment of different land uses. Biotropica 38:354–364

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forest and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Cordeiro NJ, Howe HF (2001) Low recruitment of trees dispersed by animals in African forest fragments. Conserv Biol 15:1733–1741

    Article  Google Scholar 

  • Dalling J, Brown J (2009) Long term persistence of pioneer species in tropical rain forest soil seed banks. Am Nat 173 https://doi.org/10.1086/597221

  • Davenport TRB, Howard PC, Baltzer M (1996) Mabira forest reserve: Biodiversity inventory report no. 13. Forest Department, Kampala

  • Devine MW (2004) Three Communities, Two Corporations, One Forest: Forest Resource Use and Conflict, Mabira forest, Uganda. Agroforestry in Landscape Mosaics Working Paper Series. World Agroforestry Centre, Yale University Tropical Resources Institute, and The University of Georgia.

  • Esaete J, Eycott AE, Reiniӧ J, Telford RJ, Vandvik V (2014) The Seed and Fern Spore Bank of a Recovering African Tropical Forest. Biotropica 46:677–686

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206

    Article  Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying drivers of tropical forest deforestation. Bioscience 52:143–150

    Article  Google Scholar 

  • Grace JB (1999) The factors controlling species density in herbaceous plant communities: as assessment. Perspect Plant Ecol EvolSyst 2:1–28

    Article  Google Scholar 

  • Grace JB, Pugesek BH (1997) A structural equation model of plant species richness and its application to a coastal wetland. Am Nat 149:436–460

    Article  Google Scholar 

  • Grime JP (1973) Control of species density in herbaceous vegetation. J Environ Manag 1:151–167

    Google Scholar 

  • Gwali S, Agaba H, Balitta P, Hafashimana D, Nkandu J, Kuria A, Pinard F, Sinclair F (2015) Tree species diversity and abundance in coffee farms adjacent to areas of different disturbance histories in Mabira forest system, central Uganda. Int J Biodivers Sci Ecosyst Serv Manag 11:309–317

    Article  Google Scholar 

  • Haq SM, Rashid I, Khuroo AA, Malik ZA, Malik AH (2019) Anthropogenic disturbances alter community structure in the forest of Kashmir Himalaya. Tropical Ecol 60:6–15

    Article  Google Scholar 

  • Holl KD (2012) Tropical forest restoration. In: Van Andel J, Aronson J (eds) Restoration ecology. Blackwell, Malden, p 103–114

    Chapter  Google Scholar 

  • Holzmuleller EJ, Jose S, Jenkins MA (2009) The response of understory speciescomposition, diversity and seedling regeneration to repeated burning in Southern Appalachina Oak-Hickoryforests. Nat Areas J 29:255–262

  • Howard PC (1991) Nature conservation in Uganda’s tropical forest reserves. IUCN Tropical Forest Programme, Gland, Switzerland

  • Howard PC, Davenport TRB, Kigenyi FW, Viskanic P, Baltzer MC, Dickson CJ, Lwanga JL, Mathews RA, Mupada E (2000) Protected area planning in the tropics. Uganda’s Natl Syst For Nat reserves Conserv Biol 14:858–875

    Google Scholar 

  • Howe HF (1996) Implications of seed dispersal by animals for tropical reserve management Biol Conserv 30:261–281 https://CRAN.R-project.org/package=vegan

  • Hu A, Zhang J, Chen XJ, Millner JP, Chang SH, Bowatte S, Hou RJ (2019) The composition, richness and evenness of seedlings from the soil seed bank of a semi-arid steppe in Northern China are affected by long term stocking rates of sheep and rainfall variation. Rangel J 41:23–32

    Article  CAS  Google Scholar 

  • Hubell SP, Foster RB, O’brien ST, Harms KE, Condit R, Wechster B, Wright CJ, Loo de Lao S (1999) Light-gap disturbance recruitment limitation and tree diversity in a Neotropical forest. Science 283 https://doi.org/10.1126/science.283.5401.554

  • Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012) Conspecific negative density dependence and forest diversity. Science 336:904. https://doi.org/10.1126/science.1220269

    Article  CAS  Google Scholar 

  • Katishima S, Morita S, Yoshida K, Ishida A, Hayashi S, Asami T, Ito H, Miller DG, Uehara T, Hasegawa E, Matsuura K, Kasuya E, Yoshimura J (2015). The contribution of seed dispersers to tree diversity in tropical rainforests. R Soc Open Sci https://doi.org/10.1098/rsos.150330

  • Kent M (2012) Vegetation Description and data analysis: a practical approach, Second edition. John Wiley and Sons ltd, Uk

    Google Scholar 

  • Kirika JM, Böhning-Gaese K, Dumbo B, Farwing N (2010) Reduced abundance of late successional trees but not of seedlings in heavily compared to lightly logged sites of three East African Tropical forests. J Trop Ecol 26:533–546

    Article  Google Scholar 

  • Li X, Liu W, Tang CQ (2010) The role of the seed and seedling bank in the regeneration of diverse plant communities in subtropical Ailao Mountains, Southwest China. Ecol Res 25:1171–1182

    Article  Google Scholar 

  • Ligate EJ, Wu C, Chen C (2019) Investigation of tropical coastal forest regeneration after farming and livestock grazing exclusion. J Res 30:1873–1884

    Article  Google Scholar 

  • Magee L, Wolf A, Howe R, Schubbe J, Hagenow K, Turner B (2021) Density dependence and habitat heterogeneity regulate seedling survival in a North American temperate forest. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2020.118722

  • Ministry of Water, Lands and Environment (2017) Forest Sector Review Report. Unpublished report, Government of Uganda.

  • Mugwedi LF, Rouget M, Egoh B, Sershen, Ramdhani S, Slotow R, Renteria JL (2017) An assessment of a community–based forest restoration programme in Durban (e Thekwini), South Africa. Forests 8:255. https://doi.org/10.3390/f8080255

    Article  Google Scholar 

  • Mulugo LW, Galabuzi C, Nabanoga GN, Turyahabwe N, Eilu G, Obua J, Kakudidi E, Sibelet N (2020) Cultural knowledge of forests and allied tree system management around Mabira Forest Reserve, Uganda. J Forest Res 31:1787–1802. https://doi.org/10.1007/s11676-019-00961-6

    Article  Google Scholar 

  • Mwampamba TH, Schwartz M (2011) The effects of cultivation history on forest recovery in fallows in Eastern Arc Mountain, Tanzania. For Ecol Manag 261:1042–1052

    Article  Google Scholar 

  • Mwavu NE, Witkowski ETF (2009) Seedling regeneration, environment and management in a semi-deciduous African tropical rain forest. J Veg Sci 20:791–804

    Article  Google Scholar 

  • National Forestry Authority (2008) Strategic action plan for the period 2008/9 to 2012/13 with priorities for the first five years. Government of Uganda, Kampala

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.

  • Pérez-García O, del Castillo RF (2017) Shifts in swidden agriculture alter the diversity of young fallows: Is the regeneration of cloud forest at stake in southern Mexico? Agric Ecosyst Environ 248:162–174

    Article  Google Scholar 

  • Pillay R, Hua F, Lioselle B, Benard H, Fletcher RJ (2018) Multiple stages of tree seedling recruitment are altered in tropical forests degraded by selective logging. Ecol Evol 8:8231–8242. https://doi.org/10.1002/ece3.4352

    Article  Google Scholar 

  • Plumptre AJ (1995) Importance of ‘seed trees’ for the natural regeneration of selectively logged forest. Common Wealth Forest Rev 74:253–258

    Google Scholar 

  • Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands. A test of biodiversity theory. Ecology 79:94–105

    Google Scholar 

  • Poorter L, Kitajima K, Mercado P, Chubina J, Melgar I, Prins HH (2010) Resprouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance. Ecology 91:2613–2627

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/

  • Senbeta F, Teketay D (2002) Soil seed banks in plantations and adjacent natural dry Afromontane forests of central and Southern Ethiopia. Trop Ecol 43:229–242

    Google Scholar 

  • Souza JT, Ferraz EMN, Albuquerque UP, Araujo EL (2013) Does proximity to a mature forest contribute to the seed rain and recovery of an abandoned agricultural area in a semiarid climate? Plant Biol 16:748–756. https://doi.org/10.1111/plb.12120

  • Ssekubwa E, Muwanika V, Esaete J, Tabuti J, Tweheyo M (2018) Colonization of woody seedlings in the understory of actively and passively restored tropical moist forests. Restor Ecol https://doi.org/10.1111/rec.12850

  • Teegalapalli K, Gopi GV, Samal PK (2009) Forest recovery following shifting cultivation: an overview of existing research. Tropical Conservation. Science 2:374–387. www.tropicalconservationscience.org

  • Tilman D (1983) Plant succession and gopher disturbance along an experimental gradient. Oecologia 60:285–292

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, NY ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org

  • Wilson SD, Tilman D (1991) Interactive effects of fertilization and disturbance on community structure and resource availability in old-field plant community. Oecologia 88:61–71

    Article  Google Scholar 

  • Wolfe BT, Macchiavelli R, Van Bloem SJ (2019) Seed rain along a gradient of degradation in Caribbean dry forest: Effects of dispersal limitation on the trajectory of forest recovery. Appl Veg Sci https://doi.org/10.1111/avsc.12444

  • Yan QL, Zhu JJ, Yu LZ (2012) Seed regeneration potential of canopy gaps at early formation stage in temperate secondary forest, Northeast China. PLoS ONE 7:e39502. https://doi.org/10.1371/journal.pone.0039502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NORAD through the Norwegian Program for Capacity Development in Higher Education and Research for Development (NORHED) project (UGA-13/0019) financed this study. Uganda national Council for Science and Technology (NS 511) provided permission for the study. We are grateful to the Ugandan National Forest Authority (NFA) for permitting access to Mabira CFR, to the staff of the Herbarium of Makerere University for specimen identification. We thank the conference organizing committee for supporting the conference participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine Esaete.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Tree and seedling species abundance (1 ha) in formerly cultivated (WB Western Block and EB Eastern Block) and intact areas in Mabira Central Forest Reserve

Species

Family

Trees

Seedlings

WB

EB

Intact

WB

EB

Intact

Acacia spp

Fabaceae

    

20,800

 

Acalypha fruticosa Forssk.

Euphorbiaceae

   

50,000

74,400

3200

Acalypha neptunica Müll.Arg.

Euphorbiaceae

   

58,000

36,000

46,800

Albizia glaberrima (Schum. and Thonn.) Benth.

Mimosaceae

 

33.3

133.3

400

2400

 

Albizia grandibracteata Taub.

Mimosaceae

   

400

800

 

Albizia wightii Wight and Arn

Mimosaceae

 

66.7

33.3

   

Albizia zygia (DC.) J.F.Macbr.

Mimosaceae

 

33.3

400

5600

170,400

2800

Aphania spp

Sapindaceae

  

33.3

   

Alstonia boonei De Wild.

Apocynaceae

33.3

33.3

133.3

400

  

Antariaris toxicaria Lesch.

Moraceae

133.3

66.7

100

18,400

37,200

46,000

Aphania senegalensis (Poir.) Radlk.

Sapindaceae

  

266.7

7200

67,200

17,600

Artocarpus heterophyllus Lam.

Moraceae

 

66.7

33.3

   

Blighia unijugata Baker

Sapindaceae

33.3

 

366.7

46,800

22,800

24,400

Broussonetia papyrifera (L.) L’Hér. ex Vent.

Moraceae

8333.3

1100

1200

438,000

133,600

44,800

Canarium schweifurthii Engl.

Burseracece

   

400

  

Celtis Africana Burm.F.

Celtidaceae

 

33.3

666.7

 

65,600

2400

Celtis durandii Engl.

Cananabaceae

  

533.3

2000

 

3600

Celtis mildbraedii Engl.

Cananabaceae

  

933.3

5200

10,000

41,600

Celtis wightii Planch.

Cananabaceae

  

66.7

   

Clausena anisata (Willd.) Hook.f. ex Benth

Rutaceae

   

400

  

Coffea ligustroides S.Moore

Rubiaceae

   

13,600

 

3200

Cola gigantea A.Chev.

Sterculiaceae

 

233.3

66.7

800

18,800

38,800

Cordia Africana Lam.

Boraginaceous

    

4800

 

Entandrophragma angolense (Welw.) C.DC.

Meliaceae

  

333.3

2800

18,000

10,000

Ficus asperifolia Miq.

Moraceae

   

11,200

69,600

 

Ficus capensis Thunb.

Moraceae

66.7

200

233.3

400

2400

8400

Ficus exasperata Vahl

Moraceae

33.3

100

333.3

9200

28,400

10,400

Ficus mucuso Welw. ex Ficalho

Moraceae

  

233.3

1200

  

Ficus sur Forssk.

Moraceae

33.3

  

1600

  

Funtumia elastica (Preuss) Stapf

Apocynaceae

166.7

1033.3

1100

28,400

23,200

25,600

Khaya senegalensis (Desv.) A.Juss.

Meliaceae

  

133.3

1600

 

800

Kigelia africana (Lam.) Benth.

Bignoniaceae

  

33.3

1200

  

Macaranga lancifolia Pax

Euphorbiaceae

33.3

     

Margaritaria discoidea (Baill.) G.L.Webster

Euphorbiaceae

  

233.3

4800

3200

7600

Manilkara dawei (Stapf) Chiov.

Sapotaceae

  

33.3

5200

 

44,400

Markhamia lutea (Benth.) K.Schum.

Bignoniaceae

 

33.3

66.7

 

39600

14,800

Maesopsis eminii Engl.

Rhamnaceae

33.3

133.3

    

Milicia excelsa (Welw.) C.C.Berg

Moraceae

 

33.3

33.3

 

14,800

 

Monodora angolensis Welw.

Annonaceae

  

100

7600

 

11200

Myrianthus arboreus P.Beauv.

Urticaceae

  

333.3

2800

 

800

Newtonia buchananii (Baker) G.C.C.Gilbert and Boutiqu

Fabaceae

  

100

400

7200

 

Pachystela brevipes (Baker) Baill.

Sapotaceae

  

200

 

10,800

12000

Polyscias fulva (Hiern) Harms

Apocynaceae

  

33.3

200

 

800

Prunus africana (Hook.f.) Kalkman

Rosaceae

    

2800

 

Psidium guajava L.

Myrataceae

    

400

 

Sapium ellipticum (Hochst.) Pax

Euphorbiaceae

 

66.7

33.3

 

1200

 

Schrebera arborea A.Chev.

Oleaceae

  

33.3

   

Spathodea campanulata P.Beauv.

Bignoniaceae

 

66.7

33.3

 

3200

 

Sterculia dawei Sprague

Sterculiaceae

 

100

  

4000

 

Tabernaemontana holstii K.Schum.

Apocynaceae

  

600

10,000

 

22,000

Tamarindus indica L.

Fabaceae

 

33.3

33.3

400

 

800

Teclea nobilis Delile

Rutaceae

  

233.3

1200

12,000

26,200

Terminalia brownii Fresen.

Combretaceae

   

800

  

Treculia africana Decne. ex Trécul

Moraceae

   

800

  

Trema orientalis (L.) Blume

Cannabaceae

33.3

     

Trichilia spp

Meliaceae

   

6000

  

Vernonia amygdalina Delile

Asteraceae

133.3

     

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esaete, J., Muwanika, V.B., Musiba, R. et al. Understorey Seedling Bank in Forest Areas with a Differing Period of Recovery in Mabira Central Forest Reserve, South Central Uganda. Environmental Management 71, 159–169 (2023). https://doi.org/10.1007/s00267-022-01637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-022-01637-4

Keywords

Navigation