Skip to main content

Sustainable Community Forest Management in Mexico: An Integrated Model of Three Socio-ecological Frameworks

Abstract

The sustainability of management practices in forest ecosystems should provide ecosystem services and maintain the livelihoods that largely depend on the benefits directly derived from forests; but this goal requires various theoretical and analytical approaches. This research aims to develop a conceptual model for sustainable forest management based on the integration of three conceptual frameworks founded on the society–ecosystem interaction: socio-ecological systems, sustainable forest management, and ecosystem services. The results offer a methodological, analytical, organizational, and operational route to integrate a scientific model at the material, causal, and dynamic levels, considering theoretical and empirical information; it uses grounded theory methodology to select the interactions between variables and socio-ecological dynamics of forest ecosystems under community management. For example, it integrates social components (local knowledge, governance, and social organization) and ecological components (diversity and composition of plant species, carbon pools, and nutrient dynamics) to understand their interactions through management practices and the magnitude of the ecosystem services provided according to the local contexts. We illustrate this process by analyzing the influence of governance, decision-making, resource use, and management practices on forest management and ecosystem services; this exemplifies the factors, interactions, and effects on socio-ecological systems based on experience in forest communities. These integrated frameworks provide steps through which our understanding of specific socio-ecological approaches produces better outcomes for sustainable forest management, preserves ecosystems services and benefits livelihoods in Mexican temperate forests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Antinori C, Rausser G (2007) Collective choice and community forestry management in Mexico: an empirical analysis. J Dev Stud 43(3):512–536

    Google Scholar 

  • Bender DJ, Contreras TA, Fahrig L, Ecology S, Mar N, Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of the patch size effect stable. Ecology 79(2):517–533

    Google Scholar 

  • Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12(12):1394–1404

    Google Scholar 

  • Bray DB, Merino L, Barry D (2007) Los bosques comunitarios de México. Manejo sustentable de paisajes forestales. Secretariade Medio Ambiente y Recursos Naturales

  • Bulmer M (1984) Sociological research methods, Second Edition. Edit. Routledge, Taylor & Francis Group, USA, NY

    Google Scholar 

  • Carpenter SR, Folke C, Norström A, Olsson O, SchultzL, Agarwal B, Balvanera P, Campbell B, Castilla JC, Cramer W, DeFries R, Eyzaguirre P, Hughes TP, Polasky S, Sanusi Z, Scholes R, Spierenburg M (2012) Program on ecosystem change and society: an international research strategy for integrated social-ecological systems. Curr Opin Environ Sustain 4(1):134–138. https://doi.org/10.1016/j.cosust.2012.01.001

    Article  Google Scholar 

  • Castillo MM, Morales H, Valencia E, Morales JJ, Cruz-Motta JJ (2012) The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas. Knowl Manag Aquat Ecosyst 407:09. https://doi.org/10.1051/kmae/2013035

    Article  Google Scholar 

  • Castro-Torres B (2020) Análisis socioecológico de dos sistemas de manejo forestal. Tesis, Maestría en Sostenibilidad. Universidad Nacional Autónoma de México

  • Chapela G, Merino L (2019) “Hacia una política forestal sustentable e incluyente. Los bosques de México, problemas y propuestas. Crisis Ambiental en México. En Ruta para el cambio. Leticia Merino Pérez (Ed.). Edit. UNAM. México

  • Chávez-león G, Velázquez A, Fregoso A, Bocco G (2004) Habitat associations of the long-tailed wood-partridge (Dendrortyx macroura) in a managed coniferous forest in Michoacán, Mexico. Biodivers Conserv 13(10):1943–1960

    Google Scholar 

  • Charmaz K (2001) Grounded theory: methodology and theory construction. Int Encycl Soc Behav Sci 1:6396–6399

    Google Scholar 

  • Christensen R (1997) Log-linear models and logistic regression. Springer Science & Business Media

  • Cobourn K, Arey C, Oyle K, Uffy C, Ugan H, Arrell K, Itchett L, Anson P, Art J, Enson V, Etherington A, Emanian A, Udstam L, Hu L, Oranno P (2018) From concept to practice to policy: modeling coupled natural and human systems in lake catchments. Ecosphere 9(5):e02209. https://doi.org/10.1002/ecs2.2209

    Article  Google Scholar 

  • Colding J, Barthel S (2019) Exploring the social-ecological systems discourse 20 years later. Ecol Soc, 24(1). https://doi.org/10.5751/ES-10598-240102

  • Cole D, Epstein G, McGinnis M (2019) The utility of combining the IAD and SES frameworks. Int J Commons 13:1

    Google Scholar 

  • Collins SL, Carpenter SR, Swinton SM, Orenstein DE, Childers DL, Gragson TL, Knapp AK (2011) An integrated conceptual framework for long‐term social–ecological research. Front Ecol Environ 9(6):351–357

    Google Scholar 

  • De Vos A, Biggs R, Preiser R (2019) Methods for understanding social-ecological systems: a review of place-based studies. Ecol Soc 24(4):16. https://doi.org/10.5751/es-11236-240416

    Article  Google Scholar 

  • Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnar Z, Hill R, Chan KMA, Baste IA, Brauman KA, Polasky S, Church A, Lonsdale M, Larigauderie A, Leadley PW, van Oudenhoven APE, van der Plaat F, Schröter M, Lavorel S, Shirayama Y (2018) Assessing nature contributions to people. Science 359(6373):270–272. https://doi.org/10.1126/science.aap8826

    Article  Google Scholar 

  • Egoh B, Rouget M, Reyers B, Knight A, Cowling R, van Jaarsveld A, Welz A (2007) Integrating ecosystem services into conservation assessments: a review. Ecol Econ 63(4):714–721. https://doi.org/10.1016/j.ecolecon.2007.04.007

    Article  Google Scholar 

  • Flores-Peredo R, Vázquez-Domínguez G (2016) Influence of vegetation type and season on rodent assemblage in a Mexican temperate forest mosaic. Therya 7(3):357–369

    Google Scholar 

  • Galicia L, Zarco-Arista AE (2014) Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: a review. Int J Biodivers Sci, Ecosyst Serv Manag 10(4):275–288

    Google Scholar 

  • Galicia L, Potvin C, Messier C (2015) Maintaining the high diversity of pine and oak species in Mexican temperate forests: a new management approach combining functional zoning and ecosystem adaptability. Can J For Res 45(10):1358–1368

    Google Scholar 

  • Galicia L, Chávez-Vergara B, Kolb M, Jasso-Flores I, Rodríguez-Bustos L, Solís EL, Guerra de la Cruz V, Pérez-Campuzano E, Villanueva A. (2018) Perspectivas del enfoque socio-ecológico en la conservación, aprovechamiento y pago de servicios ambientales de los bosques templados de México. Madera y Bosques, 24(2)

  • Gamboa AM, Galicia L (2011) Differential influence of land use/cover change on topsoil carbon and microbial activity in low latitude temperate forests. Agric, Ecosyst Environ 142:280–290

    Google Scholar 

  • Gamboa-Cáceres AM, Galicia L (2012) Land-use/cover change effects and carbon controls on volcanic soil profiles in highland temperate forests. Geoderma 170:390–402

    Google Scholar 

  • Gilbert J, Boulter C (2001) Developing models in science education. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gough AD, Innes JL, Allen SD (2008) Development of common indicators of sustainable forest management. Ecol Indic 8(5):425–430

    Google Scholar 

  • Guerra-De la Cruz V, Galicia L (2017) Tropical and highland temperate forest plantations in Mexico: pathways for climate change mitigation and ecosystem services delivery. Forests 8(12):489. https://doi.org/10.3390/f8120489

    Article  Google Scholar 

  • Guzmán-Mendoza R, Calzontzi-Marín J, Salas-Araiza M D, Leyte-Manrique A (2020) Changes in vegetation diversity of temperate forests in central Mexico under different levels of reforestation Forestist 70(2):69–76

    Google Scholar 

  • Herrero-Jáuregui C, Arnaiz-Schmitz C, Reyes MF, Telesnicki M, Agramonte I, Easdale MH, Montes C (2018) What do we talk about when we talk about social-ecological systems? A literature review. Sustainability 10(8):2950. https://doi.org/10.3390/su10082950

    Article  Google Scholar 

  • Hiebeler D (2000) Populations on fragmented landscapes with spatially structured heterogeneities: landscape generation and local dispersal. Ecology 81(6):1629–1641

    Google Scholar 

  • Higman S, Judd N, Mayers J, Bass S, Nussbaum R (2013) The sustainable forestry handbook: a practical guide for tropical forest managers on implementing new standards. Earthscan. Routledge, 352 Pages

  • Jardel E (2015) Criterios para la conservación de la biodiversidad en los programas de manejo forestal. Comisión Nacional Forestal – Comisión Nacional Forestal y Programa de las Naciones Unidas para el Desarrollo. 130 p

  • Jabareen Y (2009) Building a conceptual framework: philosophy, definitions, and procedure. Int J Qual Methods 8(4):49–62. https://doi.org/10.1177/160940690900800406

    Article  Google Scholar 

  • Jujnovsky J, González-Martínez TM, Cantoral-Uriza EA, Almeida-Leñero L (2012) Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City. Environ Manag 49(3):690–702

    Google Scholar 

  • La Notte A, D’Amato D, Mäkinen H, Paracchini ML, Liquete C, Egoh B, Crossman ND (2017) Ecosystem services classification: a systems ecology perspective of the cascade framework. Ecol Indic 74:392–402

    Google Scholar 

  • Leslie HM, Basurto X, Nenadovic M, Sievanen L, Cavanaugh KC, Cota-Nieto JJ, Erisman BE, Finkbeiner E, Hinojosa-Arango G, Moreno-Báez M, Nagavarapu S, Reddy SM, Sánchez-Rodríguez A, Siegel K, Ulibarria-Valenzuela JJ, Weaver AH, Aburto-Oropeza O (2015) Operationalizing the social-ecological systems framework to assess sustainability. Proc Natl Acad Sci USA. 2015;112(19):5979–5984. https://doi.org/10.1073/pnas.1414640112.

  • Levin S, Xepapadeas T, Crispin AS, Norberg J, De Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S, Daily G, Ehrlich P, Kautsky N, Müller KG, Polasky S, Troell M, Vincent JR, Walker B (2013) Social-ecological systems as complex adaptive systems: Modeling and policy implications. Environ Dev Econ 18(2):111–132. https://doi.org/10.1017/S1355770X12000460

    Article  Google Scholar 

  • Lindenmayer D, Messier C, Sato C (2016) Avoiding ecosystem collapse in managed forest ecosystems. Front Ecol Environ 14(10):561–568

    Google Scholar 

  • Madrid L, Núñez JM, Quiroz G, Rodríguez Y (2009) La propiedad social forestal en México. Investig Ambient 1(2):179–196

    Google Scholar 

  • Mäkelä A, Valentine H (2020) Models of tree and stand dynamics. Springer, Cham

    Google Scholar 

  • Márquez C, Izquierdo M, Espinet M (2006) Multimodal science teachers’ discourse in modeling the water cycle. Sci Educ 90(2):202–226

    Google Scholar 

  • Martone R, Bodini A, Micheli F (2017) Identifying potential consequences of natural perturbations and management decisions on a coastal fishery social-ecological system using qualitative loop analysis. Ecol Soc 22(1):34. http://www.jstor.org/stable/26270077

  • McGinnis MD (2011) An introduction to IAD and the language of the Ostrom workshop: a simple guide to a complex framework. Policy Stud J 39(1):169–183

    Google Scholar 

  • Mendoza-Ponce A, Galicia L (2010) Above-ground and below-ground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry: Int J For Res 83(5):497–506

    Google Scholar 

  • Merino L, Martínez AE (2014) A vuelo de pájaro. Las condiciones de las comunidades con bosques templados en México. Edit. Conabio, México, p 188

    Google Scholar 

  • Messier C, Puettmann K, Coates K (2013) Managing forests as complex adaptive systems. Routledge, 368 pages

  • Monárrez-González JC, Pérez-Verdín G, López-González C, Márquez-Linares MA, González Elizondo MDS (2018) Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques 24(2):1–16. https://doi.org/10.21829/myb.2018.2421569

    Article  Google Scholar 

  • Monroy-Sais S, Castillo A, García-Frapolli E, Ibarra-Manríquez G (2016) Ecological variability and rule-making processes for forest management institutions: a social-ecological case study in the Jalisco coast. Mex Int J Commons 10:2

    Google Scholar 

  • Mori AS, Lertzman KP, Gustafsson L (2017) Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol 54(1):12–27. https://doi.org/10.1111/1365-2664.12669

    Article  Google Scholar 

  • Návar J (2011) Stemflow variation in Mexico’s northeastern forest communities: its contribution to soil moisture content and aquifer recharge. J Hydrol 408:35–42. https://doi.org/10.1016/j.jhydrol.2011.07.006

    Article  Google Scholar 

  • Oh PS, Oh SJ (2011) What teachers of science need to know about models: an overview. Int J Sci Educ 33(8):1109–1130. https://doi.org/10.1080/09500693.2010.502191

    Article  Google Scholar 

  • Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proc Natl Acad Sci 104(39):15181–15187. https://doi.org/10.1073/pnas.0702288104

    Article  Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422

    CAS  Google Scholar 

  • Parsons W (2013) Políticas públicas: una introducción a la teoría y la práctica del análisis de políticas públicas. FLACSO, Sede Académica de México, 2007. 816 p

  • Peichl M, Arain M (2006) Above and below ground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140:51–63. https://doi.org/10.1016/j.agrformet.2006.08.004.

    Article  Google Scholar 

  • Perevotchikova M (2020) Pago por Servicios Ambientales desde el enfoque de los sistemas Socio-Ecológicos. Casos de estudio en Oaxaca y Ciudad de México. Ed. El Colegio de México y el Colegio de San Luis, México, p 230

    Google Scholar 

  • Pérez-Orellana DC, Delgado LE, Marin VH (2020) The adaptive cycle and the ecosystem services: a social-ecological analysis of Chiloé Island, southern Chile. Ecol Soc 25(4):34. https://doi.org/10.5751/ES-11977-250434

    Article  Google Scholar 

  • Pope J, Bond A, Huge J, Morrison-Saunders A (2017) Reconceptualising sustainability assessment. Environ Impact Assess Rev 62:205–215

    Google Scholar 

  • Reyers B, Biggs R, Cumming GS, Elmqvist T, Hejnowicz AP, Polasky S (2013) Getting the measure of ecosystem services: a social–ecological approach. Front Ecol Environ 11(5):268–273

    Google Scholar 

  • Rodríguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bull Math Biol 63(3):547–571. https://doi.org/10.1006/bulm.2001.0231

    Article  Google Scholar 

  • Rodríguez-Robayo KJ, Perevochtchikova M, Ávila-Foucat S (2020) Influence of local context variables on the outcomes of payments for ecosystem services. Evidence from San Antonio del Barrio, Oaxaca, Mexico. Environ, Dev Sustain 22(4):2839–2860

    Google Scholar 

  • Roopsind A, Caughlin TT, van der Hout P, Arets E, Putz FE (2018) Trade-offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity. Glob Change Biol 24:2862–2874. https://doi.org/10.1111/gcb.14155

    Article  Google Scholar 

  • Ruppert C, Antinori A (2008) Mexican and German Community forestry: an accountability framework for comparing governance. In Governing Shared Resources: Connecting Local Experience to Global Challenges, 12th Biennial Conference of the International Association for the Study of the Commons. Cheltenham, England

  • Sabatini FM, Burrascano S, Lombardi F, Chirici G, Blasi C (2015) An index of structural complexity for apennine beech forests. Forest 8(1):314–323. https://doi.org/10.3832/ifor1160-007

    Article  Google Scholar 

  • Sánchez-Nupan LO (2020) Análisis de gobernanza de dos sistemas socioecológicos en la sierra norte de Puebla. Tesis Maestría en Sostenibilidad, Universidad Nacional Autónoma de México. https://tesiunam.dgb.unam.mx/F/?func=find-b&find_code=WRD&request=Sanchez+nupan&local_base=TES01

  • Sánchez-Nupan L (in progress) Governance and forest management: two forest communities case studies

  • Saxe H, Cannell MG, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. N Phytol 149(3):369–399

    CAS  Google Scholar 

  • Saynes V, Etchevers JD, Galicia L, Hidalgo C, Campo J (2012) Soil carbon dynamics in high-elevation temperate forests of Oaxaca (Mexico): thinning and rainfall effects. Bosque 33(1):3–11

    Google Scholar 

  • Scheffer M, Carpenter SR, Dakos V, van Nes EH (2015) Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu Rev Ecol, Evolut Syst 46:145–167

    Google Scholar 

  • Spilsbury MJ, Kaimowitz D (2002) Forestry research, innovation and impact in developing countries—from economic efficiency to the broader public good. For Chronicle 78(1):103–107

    Google Scholar 

  • Strauss A, Corbin J (1994) Grounded theory methodology: an overview. In Denzin NK, Lincoln YS (eds) Handbook of qualitative research, Ch 17, pp 273–285. Thousand Oaks, CA:SAGE.

  • Taylor P (2012) Multiple forest activities, multiple purpose organizations: Organizing for complexity in a grassroots movement in Guatemala’s Petén. For Ecol Manag 268:29–38. https://doi.org/10.1016/j.foreco.2011.05.007

    Article  Google Scholar 

  • Tenza A, Pérez I, Martínez-Fernández J, Giménez A (2017) Understanding the decline and resilience loss of a long-lived socioecological system: insights from system dynamics. Ecol Soc, 22(2):15. https://doi.org/10.5751/ES-09176-220215

  • Thompson ID, Christophersen T (2008) Cross-sectoral toolkit for the conservation and sustainable management of forest biodiversity. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Truchy A, Angeler DG, Sponseller RA, Johnson RK, McKieBG (2015) Linking biodiversity, ecosystem functioning and services, and ecological resilience: towards an integrative framework for improved management. Adv Ecol Res 53:55–96

    Google Scholar 

  • Turner BL, Esler KJ, Bridgewater P, Tewksbury J, Sitas JN, Abrahams B, Chapin FS, Chowdhury RR, Christie P, Diaz S, Firth P, Knapp CN, Kramer J, Leemans R, Palmer M, Pietri D, Pittman J, Sarukhán J, Shackleton R, Mooney H (2016) Socio-Environmental Systems (SES) Research: What have we learned and how can we use this information in future research programs. Curr Opin Environ Sustain 19:160–168. https://doi.org/10.1016/j.cosust.2016.04.001

    Article  Google Scholar 

  • Valencia AS (2004) Diversidad del género Quercus (Fagaceae) en México. Bot Sci 53(75):33. https://doi.org/10.17129/botsci.1692

    Article  Google Scholar 

  • Van der Sande MT, Poorter L, Kooistra L, Balvanera P, Thonicke K, Thompson J, Arets EJ, GarciaAlaniz N, Jones L, Mora F, Mwampamba TH, Parr T, Peña-Claros M (2017) Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica 49(5):593–603. https://doi.org/10.1111/btp.12453

    Article  Google Scholar 

  • Van Oudenhoven AP, Petz K, Alkemade R, Hein L, de Groot RS (2012) Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol Indic 21:110–122

    Google Scholar 

  • Varma VK, Ferguson I, Wild I (2000) Decision support system for the sustainable forest management. For Ecol Manag 128(1-2):49–55

    Google Scholar 

  • Wallace KJ, Laughlin, DC, Clarkson BD, Schipper LA (2018) Forest canopy restoration has indirect effects on litter decomposition and no effect on dentrification. Ecosphere 9(12). https://doi.org/10.1002/ecs2.2534

  • Williams B, Brown E (2016) Technical challenges in the application of adaptive management. Biol Conserv 195:255–263. https://doi.org/10.1016/j.biocon.2016.01.012

    Article  Google Scholar 

  • Winfree R, Kremen C (2009) Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc Biol Sci 276(1655):229–237. https://doi.org/10.1098/rspb.2008.0709

  • Zerecero G, Pérez V (1981) El Manejo del Bosque y la Industria forestal en el norte del país. Cienc For 6(34):30–44

    Google Scholar 

  • Zurlini G, Petrosillo I, Cataldi M (2008) Socioecological systems. Encycl Ecol. 3264–3269. https://doi.org/10.1016/B978-008045405-4.00706-0.

Download references

Acknowledgements

Consejo Nacional de Ciencia y Tecnología (CONACYT), Project “Impactos de manejo forestal y los servicios ecosistémicos en bosques templados del Centro de México” 2016, Scientific Development to Address National Problems, ID Code 314. The authors thank Ann Grant for the English Language editing and revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Galicia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de la Mora, G.D.l.M., Sánchez-Nupan, L.O., Castro-Torres, B. et al. Sustainable Community Forest Management in Mexico: An Integrated Model of Three Socio-ecological Frameworks. Environmental Management 68, 900–913 (2021). https://doi.org/10.1007/s00267-021-01512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-021-01512-8

Keywords

  • Ecosystem services
  • Governance
  • Local knowledge
  • Social organization
  • Socio-ecological systems
  • Sustainable forest management