Potential Movement Corridors and High Road-Kill Likelihood do not Spatially Coincide for Felids in Brazil: Implications for Road Mitigation

Abstract

The negative effects of roads on wildlife populations are a growing concern. Movement corridors and road-kill data are typically used to prioritize road segments for mitigation measures. Some research suggests that locations where animals move across roads following corridors coincide with locations where they are often killed by vehicles. Other research indicates that corridors and road-kill rarely occur in the same locations. We compared movement corridor and road mortality models as means of prioritizing road segments for mitigation for five species of felids in Brazil: tiger cats (Leopardus tigrinus and Leopardus guttulus were analyzed together), ocelot (Leopardus pardalis), jaguarundi (Herpailurus yagouaroundi), and puma (Puma concolor). We used occurrence data for each species and applied circuit theory to identify potential movement corridors crossed by roads. We used road-kill records for each species and applied maximum entropy to determine where mortality was most likely to occur on roads. Our findings suggest that movement corridors and high road mortality are not spatially associated. We suggest that differences in the behavioral state of the individuals in the species occurrence and road-kill data may explain these results. We recommend that the road segments for which the results from the two methods agree (~5300 km for all studied species combined at 95th percentile) should be high-priority candidates for mitigation together with road segments identified by at least one method in areas where felids occur in low population densities or are threatened by isolation effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abouelezz HG, Donovan TM, Mickey RM et al. (2018) Landscape composition mediates movement and habitat selection in bobcats (Lynx rufus): implications for conservation planning. Landsc Ecol 33:1301–1318. https://doi.org/10.1007/s10980-018-0654-8

    Article  Google Scholar 

  2. Abra FD (2012) Monitoramento e avaliação das passagens inferiores de fauna presentes na rodovia SP-225 no município de Brotas, São Paulo (Unpublished master’s thesis). Universidade de São Paulo, São Paulo

  3. Abrahms B, Sawyer SC, Jordan NR, McNutt JW, Wilson AM, Brashares SJ (2016) Does wildlife resource selection accurately inform corridor conservation? J Appl Ecol 54:412–422. https://doi.org/10.1111/1365-2664.12714

    Article  Google Scholar 

  4. Alamgir M, Campbell MJ, Sloan S, Goosem M, Clements GR, Mahmoud MI, Laurance WF (2017) Economic, socio-political and environmental risks of road development in the tropics. Curr Biol 27:1130–1140. https://doi.org/10.1016/j.cub.2017.08.067

    CAS  Article  Google Scholar 

  5. Almeida LB, Queirolo D, Beisiegel BM, Oliveira TG (2013) Avaliação do estado de conservação do Gato-mourisco Puma yagouaroundi (É. Geoffroy Saint-Hilaire, 1803) no Brasil. Biodivers Brasileira 3:99–106

    Google Scholar 

  6. Angelieri CCS, Adams-Hosking C, Ferraz KMPMB, Souza MP, McAlpine CA (2016) Using species distribution models to predict potential landscape restoration effects on puma conservation. PLoS ONE 11(1):e0145232. https://doi.org/10.1371/journal.pone.0145232

    CAS  Article  Google Scholar 

  7. Ascensão F, Fahrig L, Clevenger AP, Corlett R, Jaeger JAG, Laurance WF, Pereira HM (2018) Environmental challenges for the belt and road initiative. Nat Sustain 1:206–209. https://doi.org/10.1038/s41893-018-0059-3

    Article  Google Scholar 

  8. Bager A, Borghi CE, Secco H (2015) The influence of economics, politics, and environment on road ecology in South America. In: van der Ree R, Smith DJ, Grilo C (eds) Handbook of road ecology. John Wiley & Sons, Oxford, p 407–413

    Google Scholar 

  9. Barbosa P, Schumaker NH, Brandon KR, Bager A, Grilo C (2020) Simulating the consequences of roads for wildlife population dynamics. Landsc Urban Plan 193:103672. https://doi.org/10.1016/j.landurbplan.2019.103672

    Article  Google Scholar 

  10. Barthelmess EL, Brooks MS (2010) The influence of body-size and diet on road-kill trends in mammals. Biodivers Conserv 19:1611–1629. https://doi.org/10.1007/s10531-010-9791-3

    Article  Google Scholar 

  11. Behdarvand N, Kaboli M, Ahmadi M, Nourani E, Mahini AS, Aghbolaghi MA (2014) Spatial risk model and mitigation implications for wolf–human conflict in a highly modified agroecosystem in western Iran. Biol Conserv 177:156–164. https://doi.org/10.1016/j.biocon.2014.06.024

    Article  Google Scholar 

  12. Bond ML, Bradley CM, Kiffner C, Morrison TA, Lee DE (2017) A multi-method approach to delineate and validate migratory corridors. Landsc Ecol 32:1705–1721. https://doi.org/10.1007/s10980-017-0537-4

    Article  Google Scholar 

  13. Boria RA, Olsonb LE, Goodmanc SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  14. Boyle S, Litzgus J, Lesbarrères D (2017) Comparison of road surveys and circuit theory to predict hotspot locations for implementing road-effect mitigation. Biodivers Conserv 26:3445–3463. https://doi.org/10.1007/s10531-017-1414-9

    Article  Google Scholar 

  15. Brasil (2014) Portaria n°444 de 17 de dezembro de 2014. Diário Oficial União 121–126. http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/00-saiba-mais/04_-_PORTARIA_MMA_N%C2%BA_444_DE_17_DE_DEZ_DE_2014.pdf Accessed 15 Aug 2019

  16. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. Methods Ecol Evol 5:694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  17. Bueno C, Faustino MT, Freitas SR (2013) Influence of landscape characteristics on capybara road-kill on highway br-040, southeastern Brazil. Oecol Aust 17(2):130–137. https://doi.org/10.4257/oeco.2013.1702.11

    Article  Google Scholar 

  18. Castilho CS, Hackbart VC, Pivello VR, Santos RF (2015) Evaluating landscape connectivity for Puma concolor and Panthera onca among Atlantic Forest protected areas. Environ Manag 55:1377–89. https://doi.org/10.1007/s00267-015-0463-7

    Article  Google Scholar 

  19. Chetkiewicz CLB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46:1036–1047. https://doi.org/10.1111/j.1365-2664.2009.01686.x

    Article  Google Scholar 

  20. Clevenger AP (2012) Mitigating continental scale bottlenecks: How small-scale highway mitigation has large-scale impacts. Ecol Restor 30(4):300–307. https://doi.org/10.3368/er.30.4.300

    Article  Google Scholar 

  21. Clevenger AP, Chruszcz B, Gunson KE (2003) Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biol Conserv 109(1):15–26. https://doi.org/10.1016/S0006-3207(02)00127-1

    Article  Google Scholar 

  22. Clevenger AP, Ford AT (2010) Wildlife crossing structures, fencing,and other highway design considerations. In: Beckmann JP, Clevenger AP, Huijser MP, Hilty JA (eds) Safe passages: highways, wildlife, and habitat connectivity. Island Press, Washington, DC, p 17–50

    Google Scholar 

  23. Clevenger AP, Huijser MP (2011) Wildlife crossing structure handbook, design and evaluation in North America. US Department of Transportation, Federal Highway Administration, Central Federal Lands Highway Division, Washington, DC

    Google Scholar 

  24. Clevenger AP, Waltho N (2000) Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv Biol 14:47–56. https://doi.org/10.1046/j.1523-1739.2000.00099-085.x

    Article  Google Scholar 

  25. Clevenger AP, Waltho N (2005) Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol Conserv 121(3):453–464. https://doi.org/10.1016/j.biocon.2004.04.025

    Article  Google Scholar 

  26. CNT (2014) Anuário CNT dos Transporte Estatísticas Consolidadas. Confederação Nacional do Transporte. http://anuariodotransporte.cnt.org.br/2018/Rodoviario/1-3-1-1-1-/Malha-rodovi%C3%A1ria-total Accessed 15 Aug 2019

  27. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  28. Colchero FD, Conde DA, Manterola C, Chávez C, Rivera A, Ceballos G (2011) Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim Conserv 4:158–166. https://doi.org/10.1111/j.1469-1795.2010.00406.x

    Article  Google Scholar 

  29. Cunha HF, Moreira FGA, Silva SS (2010) Roadkill of wild vertebrates along the GO-060 road between Goiânia and Iporá, Goiás State, Brazil. Acta Sci Biol Sci 32:257–263. https://doi.org/10.4025/actascibiolsci.v32i3.4752

    Article  Google Scholar 

  30. de la Torre JÁ, Núñez JM, Medellín RA (2017) Habitat availability and connectivity for jaguars (Panthera onca) in the southern Mayan Forest: conservation priorities for a fragmented landscape. Biol Conserv 206:270–282. https://doi.org/10.1016/j.biocon.2016.11.034

    Article  Google Scholar 

  31. Diniz MF, Machado RB, Bispo A, Brito D (2017) Identifying key sites for connecting jaguar populations in the Brazilian Atlantic Forest. Anim Conserv 21:201–210. https://doi.org/10.1111/acv.12367

    Article  Google Scholar 

  32. Elith J, Graham CH, Anderson RP, Dudık M et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  33. ESRI (2015) ArcGIS. Geographic Information System for Desktop, version 10.3.1. Redlands, CA: Environmental Systems Research Institute.

  34. Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS toolbox for surface gradient and geomorphometric modeling, version 2.0-0. https://evansmurphy.wixsite.com/evansspatial/arcgis-gradient-metrics-toolbox. Accessed 15 Aug 2019

  35. Fourcade Y, Engler JO, Rodder D, Secondi J (2014) Mapping species distributions with Maxent using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9(5):e97122. https://doi.org/10.1371/journal.pone.0097122

    CAS  Article  Google Scholar 

  36. Françoso RD, Brandão R, Nogueira CC, Salmona YB, Machado RB, Colli GR (2015) Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat Conserv 13(1):35–40. https://doi.org/10.1016/j.ncon.2015.04.001

    Article  Google Scholar 

  37. Freitas SR, Hawbaker TJ, Metzger JP (2010) Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. Ecol Manag 259:410–417. https://doi.org/10.1016/j.foreco.2009.10.036

    Article  Google Scholar 

  38. Garrote G, Fernández-Lopez J, López G, Ruiz G, Simón MA (2018) Prediction of Iberian lynx road–mortality in southern Spain: a new approach using the MaxEnt algorithm. Anim Biodivers Conserv 41(2):217–225. https://doi.org/10.32800/abc.2018.41.0217

    Article  Google Scholar 

  39. Geofabrik (2015) OpenStreetMap-Shapefiles. http://download.geofabrik.de. Accessed 15 Aug 2019

  40. Giordano AJ (2016) Ecology and status of the jaguarundi Puma yagouaroundi: a synthesis of existing knowledge. Mamm Rev 46:30–43. https://doi.org/10.1111/mam.12051

    Article  Google Scholar 

  41. Girardet X, Conruyt-Rogeon G, Foltête JC (2015) Does regional landscape connectivity influence the location of roe deer roadkill hotspots? Eur J Wildl Res 61:731–742. https://doi.org/10.1007/s10344-015-0950-4

    Article  Google Scholar 

  42. González-Gallina A, Hidalgo-Mihart MG, Castelazo-Calva V (2018) Conservation implications for jaguars and other neotropical mammals using highway underpasses. PLoS ONE 13(11):e0206614. https://doi.org/10.1371/journal.pone.0206614

    CAS  Article  Google Scholar 

  43. Grilo C, Ascensão F, Santos-Reis M, Bissonette JÁ (2011) Do well-connected landscapes promote road-related mortality? Eur J Wildl Res 57:707–716. https://doi.org/10.1007/s10344-010-0478-6

    Article  Google Scholar 

  44. Grilo C, Bissonette JA, Santos-Reis M (2009) Spatial-temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation. Biol Cons 142(2):301–313

    Article  Google Scholar 

  45. Grilo C, Coimbra MR, Cerqueira RC, Barbosa P, Dornas RAP, Gonçalves LO et al. (2018) Brazil road-kill—a dataset of wildlife terrestrial vertebrate road-kills. Ecology 99:2625–2625. https://doi.org/10.1002/ecy.2464

    Article  Google Scholar 

  46. Grilo C, Ferreira FZ, Revilla E (2015) No evidence of a threshold in traffic volume affecting road-kill mortality at a large spatio-temporal scale. Environ Impact Assess Rev 55:54–58

    Article  Google Scholar 

  47. Gunson KE, Mountrakis G, Quackenbush LJ (2011) Spatial wildlife-vehicle collision models: a review of current work and its application to transportation mitigation projects. J Environ Manag 92(4):1074–1082. https://doi.org/10.1016/j.jenvman.2010.11.027

    Article  Google Scholar 

  48. Habel JC, Rasche L, Schneider UA et al. (2019) Final countdown for biodiversity hotspots. Conserv Lett 111:1–9. https://doi.org/10.1111/conl.12668

    Article  Google Scholar 

  49. Hegel CGZ, Consalter GC, Zanella N (2012) Mamíferos silvestres atropelados na rodovia RS-135, norte do Estado do Rio Grande do Sul. Biotemas 25:165–170. https://doi.org/10.5007/2175-7925.2012v25n2p165

    Article  Google Scholar 

  50. Huijser MP, Mosler-Berger C, Olsson M, Strein M (2015) Wildlife warning signs and animal detection systems aimed at reducing wildlife-vehicle collisions. In: van der Ree R, Smith DJ, Grilo C (eds) Handbook of road ecology. John Wiley & Sons, Oxford, p 198–212

    Google Scholar 

  51. IBGE (2018) Estimativas da população residente no Brasil e Unidades da Federação com data de referência em 1º de julho de 2018. Instituto Brasileiro de Geografia e Estatística. ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2018. Accessed 15 Aug 2019

  52. IUCN (2020) The IUCN Red List of Threatened Species. Version 2020-3. www.iucnredlist.org. Downloaded on 1 June 2020

  53. Kang W, Minor ES, Woo D, Lee D, Park CR (2016) Forest mammal roadkills are related to habitat connectivity in protected areas. Biodivers Conserv 25:2673–2686. https://doi.org/10.1007/s10531-016-1194-7

    Article  Google Scholar 

  54. Koen EL, Bowman J, Sadowski C, Walpole A (2014) Landscape connectivity for wildlife: development and validation of multispecies linkage maps. Methods Ecol Evol 5:626–633. https://doi.org/10.1111/2041-210X.12197

    Article  Google Scholar 

  55. Kranstauber B, Cameron A, Weinzierl R, Fountain T, Tilak S, Wikelski M, Kays R (2011) The Movebank data model for animal tracking. Environ Model Softw 26(6):834–835. https://doi.org/10.1016/j.envsoft.2010.12.005

    Article  Google Scholar 

  56. Laliberté J, St-Laurent M-H (2020) Validation of functional connectivity modeling: the Achille´s heel of landscape connectivity mapping. Landsc Urban Plan 202:103878. https://doi.org/10.1016/j.landurbplan.2020.103878

    Article  Google Scholar 

  57. Laurance WF (2015) Bad roads, good roads. In: van der Ree R, Smith DJ, Grilo C (eds) Handbook of road ecology. John Wiley & Sons, Oxford, p 10–15

    Google Scholar 

  58. Laurance WF (2018) Conservation and the global infrastructure tsunami: disclose, debate, delay! Trends Ecol Evol 33:568–571. https://doi.org/10.1016/j.tree.2018.05.007

    Article  Google Scholar 

  59. Laurance WF, Clements GR, Sloan S, O’Connell SC, Mueller ND, Goosem M, Van ter O, Edwards DP, Phalan B, Balmford A, Van der Ree R, Arrea IB (2014) A global strategy for road building. Nature 513:229–232. https://doi.org/10.1038/nature13717

    CAS  Article  Google Scholar 

  60. Laurance WF, Goosem M, Laurance SG (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669. https://doi.org/10.1016/j.tree.2009.06.009

    Article  Google Scholar 

  61. Leonard PB, Duffy EB, Baldwin RF, McRae BH, Shah VB, Mohapatra TK (2017) Gflow: software for modelling circuit theory‐based connectivity at any scale. Methods Ecol Evol 8:519–526. https://doi.org/10.1111/2041-210X.12689

    Article  Google Scholar 

  62. Massara RL, Paschoal AMDO, Doherty Jr PF, Hirsch A, Chiarello AG (2015) Ocelot population status in protected Brazilian Atlantic Forest. PLoS ONE 10(11):e0141333. https://doi.org/10.1371/journal.pone.0141333

    CAS  Article  Google Scholar 

  63. McClure ML, Ament RJ (2014) Where people and wildlife intersect: prioritizing mitigation of road impacts on wildlife corridors. Bozeman. https://lccnetwork.org/resource/where-people-and-wildlife-intersect-prioritizing-mitigation-road-impacts-wildlife. Accessed 15 Aug 2019

  64. McGuire TM, Morrall JF (2000) Strategic highway improvements to minimize environmental impacts within the Canadian Rocky Mountain national parks. Can J Civ Eng 27:523–32

    Article  Google Scholar 

  65. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. https://doi.org/10.1890/07-1861.1

    Article  Google Scholar 

  66. McShane BB, Gal D, Gelman A, Robert C, Tackett JL (2019) Abandon statistical significance. Am Stat 73:235–245. https://doi.org/10.1080/00031305.2018.1527253

    Article  Google Scholar 

  67. Mohammadi A, Almasieh K, Clevenger AP, Fatemizadeh F, Rezaei A, Jowkar H, Kaboli M (2018) Road expansion: a challenge to conservation of mammals, with particular emphasis on the endangered Asiatic cheetah in Iran. J Nat Conserv 43:8–18. https://doi.org/10.1016/j.jnc.2018.02.011

    Article  Google Scholar 

  68. Oliveira TG, Lima BC, Fox-Rosales L, Pereira RS, Pontes-Araújo E, Sousa AL (2020) A refined population and conservation assessment of the elusive and endangered northern tiger cat (Leopardus tigrinus) in its key worldwide conservation area in Brazil. Glob Ecol Conserv 22:e00927. https://doi.org/10.1016/j.gecco.2020.e00927

    Article  Google Scholar 

  69. Oliveira TG, Mazim FD, Fox-Rosales L, Peters FB, Marques RV, Lima BC, Marinho P, Meira LP, Pereira A, Silva DG, Favarini M, Soares JBG (2018) Assessing small cats abundance in Brazil: Camera Trapping Summary Report—2018. Instituto Pró-Carnívoros/Instituto Pampa. https://gatosdomatobrasil.wixsite.com/wildcatsbrazil/publications. Accessed 15 Aug 2019

  70. Oliveira TG, Tortato MA, Silveira L, Kasper CB, Mazim FB, Lucherini M, Jácomo AN, Soares JBG, Marques RV, Sunquist ME (2010) Ocelot ecology and its effect on the small-felid guild in the lowland neotropics. In: Macdonald WD, Loveridge AJ (eds) Biology and conservation of the wild felids. Oxford University Press, New York, NY, p 559–580

    Google Scholar 

  71. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  72. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  73. Pinto FAS, Clevenger AP, Grilo C (2019) Effects of roads on terrestrial vertebrate species in Latin America. Environ Impact Assess Rev 81:106337. https://doi.org/10.1016/j.eiar.2019.106337

    Article  Google Scholar 

  74. Powell RA, Ziellinski WJ (1994) Fisher. In: Ruggiero LF, Aubry KB, Buskirk SW, Lyon LJ, Zielinski WJ (eds) The Scientific Basis for Conserving Forest Carnivores American Marten, Fisher, Lynx and Wolverine in the Western United States. General Technical Report RM 254. https://www.fs.usda.gov/treesearch/pubs/6421. Accessed 20 June 2020

  75. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci USA 105:20770–20775. https://doi.org/10.1073/pnas.0806080105

    Article  Google Scholar 

  76. R Core Team (2018) R: a language and environment for statistical computing. https://www.R-project.org. Accessed 15 Aug 2019

  77. Rabinowitz A, Zeller K (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143:939–945. https://doi.org/10.1016/j.biocon.2010.01.002

    Article  Google Scholar 

  78. REED (2002) Animal behavior as a tool for conservation biology. In: Aguirre AA, Ostfeld RS, House CA, Tabor GM, Peral MC (eds) Conservation medicine: ecological health in practice. Oxford University Press, New York, p 145–163

  79. Ribeiro MC, Metzger JP, Martensea AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  80. Roberts K, Sjölund A (2015) Incorporating biodiversity issues into road design: The road agency perspective. In: van der Ree R, Smith DJ, Grilo C (eds) Handbook of road ecology. John Wiley & Sons, Oxford, p 27–31

    Google Scholar 

  81. Rytwinski T, van der Ree R, Cunnington GM, Fahrig L, Findlay CS, Houlahan J, Jaeger JAG, Soanes K, van der Grift EA (2015) Experimental study designs to improve the evaluation of road mitigation measures for wildlife. J Environ Manag 154:48–64. https://doi.org/10.1016/j.jenvman.2015.01.048

    Article  Google Scholar 

  82. Rytwinski T, Soanes K, Jaeger JAG, Fahrig L, Findlay CS, Houlahan J, van der Ree R, van der Grift EA (2016) How effective is road mitigation at reducing road-kill? A meta-analysis. PLoS ONE 11(11):e0166941. https://doi.org/10.1371/journal.pone.0166941

    CAS  Article  Google Scholar 

  83. Santos SM, Lourenço R, Mira A, Beja P (2013) Relative effects of road risk, habitat suitability, and connectivity on wildlife roadkills: the case of tawny owls (Strix aluco). PLoS ONE 8(11):e79967. https://doi.org/10.1371/journal.pone.0079967

    Article  Google Scholar 

  84. Schmidt GM, Lewison RL, Swarts HM (2020) Identifying landscape predictors of ocelot road mortality. Landsc Ecol 35:1651–1666. https://doi.org/10.1007/s10980-020-01042-4

    Article  Google Scholar 

  85. Silva LG, Cherem J, Kasper C, Trigo T, Eizirik E (2014) Mapping wild cat roadkills in southern Brazil: an assessment of baseline data for species conservation. Cat News 61:04–07

    Google Scholar 

  86. Silva LG, Kawanishi K, Henschel P, Kittle A, Sanei A, Reebin A, Miquelle D, Stein AB, Watson A, Kekule LB, Machado RB, Eizirik E (2017) Mapping black panthers: Macroecological modeling of melanism in leopards (Panthera pardus). PLoS ONE 12(4):e0170378. https://doi.org/10.1371/journal.pone.0170378

    CAS  Article  Google Scholar 

  87. Silveira L, Sollmann R, Jácomo ATA, Diniz-Filho JA, Torres N (2014) The potential for large-scale wildlife corridors between protected areas in Brazil using the jaguar as a model species. Landsc Ecol 29:1213–1223. https://doi.org/10.1007/s10980-014-0057-4

    Article  Google Scholar 

  88. Souza JC, Cunha VP, Markwith SH (2014) Spatiotemporal variation in human-wildlife conflicts along highway BR-262 in the Brazilian Pantanal. Wetl Ecol Manag 23:227–239. https://doi.org/10.1007/s11273-014-9372-4

    Article  Google Scholar 

  89. Srbek-Araujo AC, Mendes SL, Chiarello AG (2015) Jaguar (Panthera onca Linnaeus, 1758) roadkill in Brazilian Atlantic Forest and implications for species conservation. Braz J Biol 75:581–586. https://doi.org/10.1590/1519-6984.17613

    CAS  Article  Google Scholar 

  90. Sunquist ME, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago

    Google Scholar 

  91. Teixeira FZ, Coelho IP, Esperandio IB, Oliveira NC, Peter FP, Dornelles SS, Delazeri NR, Tavares M, Martins MB, Kindel A (2013) Are road-kill hotspots coincident among different vertebrate groups? Oecol Aust 17:36–47. https://doi.org/10.4257/oeco.2013.1701.04

    Article  Google Scholar 

  92. Teixeira FZ, Coelho IP, Lauxen M, Esperandio IB, Hartz SM, Kindel A (2016) The need to improve and integrate science and environmental licensing to mitigate wildlife mortality on roads in Brazil. Trop Conserv Sci 34–42. https://doi.org/10.1177/194008291600900104

  93. Tewes ME, Hughes RW (2001) Ocelot management and conservation along transportation corridors in Southern Texas. ICOET 2001 Proceedings. https://escholarship.org/uc/item/6mc7x9mx#main. Accessed 15 Aug 2019

  94. Trigo T, Schneider A, de Oliveira TD, Lehugeur LM, Silveira L, Freitas TR, Eizirik E (2013) Molecular data reveal complex hybridization and a cryptic species of neotropical wild cat. Curr Biol 23:1–6. https://doi.org/10.1016/j.cub.2013.10.046

    CAS  Article  Google Scholar 

  95. van der Grift EA, Pouwels R (2006) Restoring habitat connectivity across transport corridors: Identifying high-priority locations for defragmentation with the use of an expert-based model. In: Davenport J, Davenport JL (eds) The ecology of transportation: managing mobility for the environment. Springer, Dordrecht, p 205–231

    Google Scholar 

  96. van der Ree R, Smith D, Grilo C (2015) Handbook of road ecology. John Wiley, New York, NY

    Google Scholar 

  97. Vilela T, Harb AM, Bruner A, Arruda VLS, Ribeiro V, Alencar AAC, Grandez AJE, Rojas A, Laina A, Botero R (2020) A better Amazon road network for people and the environment. Proc Natl Acad Sci USA 117(13):7095–7102. https://doi.org/10.1073/pnas.1910853117

    CAS  Article  Google Scholar 

  98. Zanin M, Palomares F, Brito D (2015) What we (don’t) know about the effects of habitat loss and fragmentation on felids. Oryx 49:96–106. https://doi.org/10.1017/S0030605313001609

    Article  Google Scholar 

  99. Zeller KA, McGarigal K, Beier P, Cushman SA, Vickers TW, Boyce VM (2014) Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: pumas as a case study. Landsc Ecol 29:541–557. https://doi.org/10.1007/s10980-014-9991-4

    Article  Google Scholar 

  100. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797. https://doi.org/10.1007/s10980-012-9737-0

    Article  Google Scholar 

  101. Zeller KA, Wattles DW, DeStefano S (2018) Incorporating road crossing data into vehicle collision risk models for moose (Alces americanus) in Massachusetts, USA. Environ Manag 62:518–528. https://doi.org/10.1007/s00267-018-1058-x

    Article  Google Scholar 

  102. Zeller KA, Wattles DW, DeStefano S (2020) Evaluating methods for identifying large mammal road crossing locations: black bears as a case study. Landsc Ecol https://doi.org/10.1007/s10980-020-01057-x

  103. Ziółkowska E, Perzanowski K, Bleyhl B, Ostapowicz K, Kuemmerle T (2016) Understanding unexpected reintroduction outcomes: why aren’t European bison colonizing suitable habitat in the Carpathians? Biol Conserv 195:106–117. https://doi.org/10.1016/j.biocon.2015.12.032

    Article  Google Scholar 

  104. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, NY

    Google Scholar 

Download references

Acknowledgements

This study was part of the project “Road Macroecology: analysis tools to assess impacts on biodiversity and landscape structure” funded by Conselho Nacional de Desenvolvimento Científico e Tencnológico (CNPq)—No. 401171/2014-0, AJT No. 300021/2015-1. It was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 1666074; in part by CNPq (300021/2015-1 and dcr-0006-2.04/17) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE, APQ 0313-2.04/16). Thanks to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020 + UIDB/50017/2020), through national funds. We warmly thank collaborating researches for felids occurrence data in Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros/Instituto Chico Mendes de Conservação da Biodiversidade (CENAP/ICMBio) database, especially R.G. Morato who organized the data and made it available. We also thank collaborating researches for help in improving modeling approaches during preliminary analysis (L. Bonjorne, C. Espinosa, R.V. Marques, R.G. Morato, S.S.M. Onuma, F. Palmeira, M. Passamani, B.H. Sanharoli, F. Tirelli).

Author information

Affiliations

Authors

Contributions

RCC: conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing, visualization; PL: methodology, formal analysis, writing—review and editing; LGS: methodology, writing—review and editing; AB: writing—review and editing; APC: writing—review and editing, visualization; JAGJ: conceptualization, methodology, writing—original draft, writing—review and editing, visualization; CG: conceptualization, methodology, writing—original draft, writing—review and editing, visualization.

Corresponding author

Correspondence to Rafaela Cobucci Cerqueira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerqueira, R.C., Leonard, P.B., da Silva, L.G. et al. Potential Movement Corridors and High Road-Kill Likelihood do not Spatially Coincide for Felids in Brazil: Implications for Road Mitigation. Environmental Management 67, 412–423 (2021). https://doi.org/10.1007/s00267-020-01411-4

Download citation

Keywords

  • Connectivity
  • Circuit theory
  • Road mortality
  • Habitat suitability
  • Wildlife